Biomolecules present in tick saliva with pharmacological potential: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.40453

Keywords:

Saliva; Tick; Pharmacological potential; Salivary biomolecules.

Abstract

Knowing that ticks have bioactive molecules in their saliva which modulate hemostatic and immunomodulatory activities in humans, we carried out a systematic search for biomolecules present in tick saliva with great pharmacological potential. We evaluated studies published in the last ten years. Following the recommendations of the Prisma tool, primary and secondary studies of a systematic nature were selected, with no language or country restriction. Studies that included arthropods other than ticks and studies in which the use of saliva had no pharmacological application were excluded. For searches, we used the following databases: MEDLINE®/PubMed®, Web of Science, LILACS, EMBASE, Cochrane and SCOPUS. The methodological quality was performed using the tools available in Joanna Briggs, always with two or more independent evaluators. The generated data were tabulated and summarized through qualitative narrative analysis. The methodology selected 19 articles that met the eligibility criteria. The saliva of hard ticks, found in the Americas, is more promising when used in experimental studies with human cells. The elucidation of the biomolecules was possible, with evasin and serpine being the biomolecules with the most evident pharmacological potential for anti-inflammatory action. In the selected studies, we found only experimental studies, with no pre-clinical or clinical studies, making methodological qualification difficult; in some studies, with the biomolecule Evasin and Serpin, the need for elucidation of these biomolecules in question was suggested. Thus, we found evidence that the saliva of American hard ticks is the most studied for pharmacological applications of anti-inflammatory and immunomodulatory action.

References

Anisuzzaman, Hatta, T., Miyoshi, T., Matsubayashi, M., Islam, M. K., Alim, M. A., Anas, M. A., Hasan, M. M., Matsumoto, Y., Yamamoto, Y., Yamamoto, H., Fujisaki, K., & Tsuji, N. (2014). Longistatin in tick saliva blocks advanced glycation end-product receptor activation. J Clin Invest. 124, 4429-44. https://doi.org/10.1172/jci74917

Aounallah H., Bensaoud C., M'ghirbi Y., Faria F., Chmelar J.I., & Kotsyfakis M. (2020). Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol. 23, p.583-845. https://doi.org/10.3389/fimmu.2020.583845

Arango, H. G. (2001). Bioestatística teórica e computacional. In: Bioestatística teórica e computacional. Editora: Guanabara Koogan. p. 235. https://www.grupogen.com.br/bioestatistica-teorica-e-computacional

Assumpção T. C., Mizurini D. M., Ma D., Monteiro R. Q., Ahlstedt S., Reyes M., Kotsyfakis M., Mather T. N., Andersen J. F., Lukszo J., Ribeiro J. M. C., & Francischetti I. M. B. (2018). Ixonnexin from Tick Saliva Promotes Fibrinolysis by Interacting with Plasminogen and Tissue-Type Plasminogen Activator, and Prevents Arterial Thrombosis. Sci Rep. 4806, 1-12. https://doi.org/10.1038/s41598-018-22780-1

Batista I. F., Ramos O. H., Ventura J. S., Junqueira-de-Azevedo I. L., Ho P. L., & Chudzinski-Tavassi A.M. (2010). A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys. 493, 151-6.https://doi.org/10.1016/j.abb.2009.10.009

Bonvin, P., Power C. A., & Proudfoot A. E. I. (2016). Evasins: Therapeutic Potential of a New Family of Chemokine-Binding Proteins from Ticks. Frontiers in Immunology. 7, 208. https://doi.org/10.3389/fimmu.2016.00208

Bowman, A., Ball, A., & Sauer, J. (2008). Tick salivary glands: The physiology of tick water balance and their role in pathogen trafficking and transmission. In A. Bowman & P. Nuttall (Eds.), Ticks: Biology, Disease and Control; Cambridge: Cambridge University Press; 73-91. https://doi.org/10.1017/s0031182004006468

Branco V. G., Iqbal A., Alvarez-Flores M. P., Sciani J. M., de Andrade S. A., Iwai L. K., Serrano S. M., & Chudzinski-Tavassi A. M. (2016). Amblyomin-X having a Kunitz-type homologous domain is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. Biochim Biophys Acta. 1864, 1428-35. https://doi.org/10.1016/j.bbapap.2016.07.011

Canadian Agency for Drugs and Technologies in Health (CADTH). (2020). Grey matters: a practical tool for searching health-related grey literature [Internet]. https://www.cadth.ca/ - acess: 25/05/2021. The Agency.

Chudzinski-Tavassi A. M., De-Sá-Júnior P. L., Simons S. M., Maria D. A., de Souza V. J., Batista I. F., Faria F., Durães E., Reis E. M., & Demasi M. (2010). A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon. 56, 1145-54. https://doi.org/10.1016/j.toxicon.2010.04.019

Chmelař, J., Kotál, J., Kovaříková, A., & Kotsyfakis, M. (2019). The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol. 10; p. 812. https://doi.org/10.3389/fphys.2019.00812

Chmelař J., Kotál J., Langhansová H., & Kotsyfakis M. (2017). Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front Cell Infect Microbiol; 7, p.216.https://doi.org/10.3389/fcimb.2017.00216

Corral-Rodríguez M. A., Macedo-Ribeiro S., Pereira P. J. B., & Fuentes-Prior P. (2009). Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol. 39, 579-95.https://doi.org/10.1016/j.ibmb.2009.07.003

Dantas-Torres, F., Martins, T. F., Muñoz-Leal, S., Onofrio V. C., & Barros-Battesti D. M. (2019). Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic Keys. Ticks and Tick-borne Diseases, 10, 1-45. https://doi.org/10.1016/j.ttbdis.2019.06.012

Decrem Y., Rath G., Blasioli V., Cauchie P., Robert S., Beaufays J., Frère J. M., Feron O., Dogné J. M., Dessy C., Vanhamme L., & Godfroid E. (2009). Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J Exp Med. 206 p.2381-95. https://doi.org/10.1084/jem.20091007

Déruaz M., Bonvin P., Severin I C., Johnson Z., Krohn S., Power C. A., & Proudfoot A. E. I. (2013). Evasin-4, a tick-derived chemokine-binding protein with broad selectivity can be modified for use in preclinical disease models. FEBS J. 19, 4876-87. https://doi.org/10.1111/febs.12463

Déruaz M., Frauenschuh A., Alessandri A. L., Dias J. M., Coelho F. M., Russo R. C., Ferreira B. R., Graham G. J., Shaw J. P., Wells T. N., Teixeira M. M., Power C. A., & Proudfoot A. E. (2008). Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med. 9, 2019-31. https://doi.org/10.1084/jem.20072689

Francischetti, I. M. B., Sa-Nunes, A., Mans, B. J., Santos, I. M. & Ribeiro J. M. C. (2009). The role of saliva in tick feeding. Front Biosci (Landmark Ed). 14, 2051-88. https://doi.org/10.2741/3363

Franck C., Foster S. R., Johansen-Leete J., Chowdhury S., Cielesh M., Bhusal R. P., Mackay J. P., Larance M.,Stone M. J., & Payne R .J. (2020). Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proceedings of the National Academy of Sciences. 23, 2657-12664. https://doi.org/10.1073/pnas.2000605117

Frauenschuh A., Power C. A., Déruaz M., Ferreira B. R., Silva J. S., Teixeira M. M., Dias J. M., Martin T., Wells T. N. C., & Proudfoot A. E. I. (2007). Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J Biol Chem. 37, 27250-27258. https://doi.org/10.1074/jbc.M704706200

Haddaway, N. R., & McGuinness L. A. (2020). PRISMA2020: R package and ShinyApp for producing PRISMA 2020 compliant flow diagrams (Version 0.0.1). Zenodo. http://doi.org/10.5281/zenodo.4287835

Hajnická V., Vančová-Štibrániová I., Slovák M., Kocáková P., & Nuttall P. A. (2011). Ixodid tick salivary gland products target host wound healing growth factors. Int J Parasitol; 2, 213-23. http://doi.org/10.1016/j.ijpara.2010.09.005

Iyer J. K., Koh C. Y., Kazimirova M., Roller L., Jobichen C., Swaminathan K., Mizuguchi J., Iwanaga S., Nuttall P. A., Chan M. Y., & Kini R. M. (2017). Avathrin: a novel thrombin inhibitor derived from a multicopy precursor in the salivary glands of the ixodid tick, Amblyomma variegatum. FASEB J. 31, p.2981-2995. https://doi.org/10.1096/fj.201601216R

Joanna Briggs Institute (JBI) Critical appraisal tools., 2020. http://joannabriggs.org/research/critical-appraisal-tools.html

Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., Langhansová H., Schwarz A., Calvo E., Kopecký J., Mareš M., Schmitt E., Chmelař J., & Kotsyfakis M. (2019). The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci.76, p.2003-2013. https://doi.org/10.1007/s00018-019-03034-3

Kotsyfakis M., Sá-Nunes A., Francischetti I. M., Mather T. N., Andersen J. F., & Ribeiro J. M. (2006). Anti-inflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 281, 26298-307. https://doi.org/10.1074/jbc.M513010200

Narasimhan S., Perez O., Mootien S., DePonte K., Koski R. A., Fikrig E., & Ledizet M. (2013). Characterization of Ixophilin, a thrombin inhibitor from the gut of Ixodes scapularis. PLoS One. 8, e68012 1-8. https://doi.org/10.1371/journal.pone.0068012

Nascimento T. G., Vieira P. S., Cogo S. C., Dias-Netipanyj M. F., Junior N. F., Câmara D. A. D., Porcacchia A. J., Mendonça R. Z., Moreno-Amaral A. N., Junior P. L. S., Simons M. S., Zischler L., & Esposito S. E. (2019). Antitumoral effects of Amblyomma sculptum Berlese saliva in neuroblastoma cell lines involve cytoskeletal deconstruction and cell cycle arrest. Rev. Bras. Parasitol Vet. 28, 126-133. https://doi.org/10.1590/S1984-296120180098

Nuttall, P. A. (2019). Wonders of tick saliva. Ticks and Tick-borne Diseases., 2, 470-481. https://doi.org/10.1016/j.ttbdis.2018.11.005

Oliveira C. J., Sá-Nunes A., Francischetti .I. M., Carregaro V., Anatriello E., Silva J. S., Santos I. K., Ribeiro J. M., & Ferreira B. R. (2011). Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem. 286, 10960-9. https://doi.org/10.1074/jbc.M110.205047

Paesen G. C., Adams P. L., Nuttall P A., & Stuart D. L. (2000). Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta. 1482(1-2), 92-101. https://doi.org/10.1074/jbc.m800188200

Rodriguez-Valle M., Xu T., Kurscheid S., & Lew-Tabor A. (2015). Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasites Vectors. 8, 1-9. https://doi.org/10.1186/s13071-014-0605-4

Sajiki Y., Konnai S., Ochi A., Okagawa T., Githaka N., Isezaki M., Yamada S., Ito T., Ando S., Kawabata H., Logullo C., Junior I.S.V., Maekawa N., Murata S., & Ohashi K. (2020). Immunosuppressive effects of sialostatin L1 and L2 isolated from the taiga tick Ixodes persulcatus Schulze. Ticks and Tick-borne Diseases. 11, 1-11. https://doi.org/10.1016/j.ttbdis.2019.101332

Sangamnatdej S., Paesen G. C., Slovak M., & Nuttall P. A. (2002). A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol Biol. 11, 79-86. https://doi.org/10.1046/j.0962-1075.2001.00311.x

Simons S. M., Júnior P. L., Faria F., Batista I. F., Barros-Battesti D. M., Labruna M. B., & Chudzinski-Tavassi A.M. (2011). The action of Amblyomma cajennense tick saliva in compounds of the hemostatic system and cytotoxicity in tumor cell lines. Biomed Pharmacother; 65, 443-50. https://doi.org/10.1016/j.biopha.2011.04.030

Singh K., Davies G., Alenazi Y., Eaton J. R. O., Kawamura A., & Bhattacharya S. (2017). Yeast surface display identifies a family of evasins from ticks with novel polyvalent CC chemokine-binding activities. Sci Rep. 7 p. 4267.https://doi.org/10.1038/s41598-017-04378-1

Tao Xu., Ala Lew-Tabor., & Manuel Rodriguez-Valle. (2016). Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks and Tick-borne Diseases. 1, 180-187.https://doi.org/10.1016/j.ttbdis.2015.09.007

Tatchell, R. J. (1967). A modified method for obtaining tick oral secretion. J Parasitol., 5, 1106-7.https://books.google.com.br/books?id=3xndXi0VDMUC&pg=PA113&lpg=PA113&dq=Tatchell,+R.J.+(1967).+A+modified+method+for+obtaining+tick+oral+secretion.+J+Parasitol.,+5,+p.1106-7.&source=bl&ots=CH4ET9Bvyp&sig=ACfU3U2INPaaQwSu8KdO1PZTcOZemxaNcQ&hl=pt-BR&sa=X&ved=2ahUKEwiz5_PXnan9AhXwq5UCHQ4vAc8Q6AF6BAgWEAM#v=onepage&q=Tatchell%2C%20R.J.%20(1967).%20A%20modified%20method%20for%20obtaining%20tick%20oral%20secretion.%20J%20Parasitol.%2C%205%2C%20p.1106-7.&f=false

Valdés, J. J. (2014). Antihistamine response: a dynamically refined function at the host-tick interface. Parasites Vectors. 7, 491.https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-014-0491-9

Vieira A. T., Fagundes C. T., Alessandri A. L., Castor M. G., Guabiraba R., Borges V. O., Silveira K. D., Vieira E .L., Gonçalves J.L., Silva T. A., Deruaz M., Proudfoot A. E. I., Sousa L. P., & Teixeira M. M. (2009). Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am J Pathol. 6, 2382-91. https://doi.org/10.1074/jbc.m117.807255

Wang F., Song Z., Chen J., Wu Q., Zhou X., Ni X., & Dai J. (2020). The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology.159, 109-120. https://doi.org/10.1111/imm.13130

Wang Y., Li Z., Zhou Y., Cao J., Zhang H., Gong H., & Zhou J. (2016). Specific histamine binding activity of a new lipocalin from Hyalomma asiaticum (Ixodidae) and therapeutic effects on allergic asthma in mice. Parasites Vectors. 117, 12657-12664. https://doi.org/10.1186/s13071-016-1790-0

Watson E. E., Ripoll-Rozada J., Lee A. C., Wu M. C. L., Franck C., Pasch T., Premdjee B., Sayers J., Pinto M. F., Martins P. M., Jackson S. P., Pereira P. J. B., & Payne R .J. (2019). Rapid assembly and profiling of an anticoagulant sulfoprotein library. Proceedings of the National Academy of Sciences. 116, 13873-13878. https://doi.org/10.1073/pnas.1905177116

Downloads

Published

05/03/2023

How to Cite

BARBOSA, Y. O. .; MARTINS, B. R. .; RATKEVICIUS, C. M. A. .; RODRIGUES, W. F. .; OLIVEIRA, C. J. F. .; ESPINDULA , A. P.; ALVES, R. P. . Biomolecules present in tick saliva with pharmacological potential: a systematic review. Research, Society and Development, [S. l.], v. 12, n. 3, p. e16312340453, 2023. DOI: 10.33448/rsd-v12i3.40453. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40453. Acesso em: 12 nov. 2024.

Issue

Section

Review Article