Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4077

Keywords:

Bacillus subtilis; Biosurfactant; Adsorption; Iron.

Abstract

The presence of metals in industrial effluents has become a major environmental problem since these residues are often disposed of in lakes or rivers. Aiming to recover contaminated areas the remediation by washing using biosurfactants appears as an alternative technique that features low toxicity to the environment. This paper aims to evaluate the efficiency in iron removal within a synthetic effluent, utilizing a biosurfactant. This was produced in a bioreactor (37°C, 200 rpm, 0.5 vvm) derived from a papaya peel aqueous extract and the Bacillus subtilis UFPEDA strain 86. The fermentation tests revealed that this Bacillus is a great producer for the biosurfactant. The tests also displayed that the papaya peel extract is a viable substrate for the production of biosurfactant by this strain. Among the results found, in 24 hours of cultivation, the highest concentration of biomass and product was obtained, of 2.17 ± 0.04 g.L-1 and 2.88 ± 0.01 g.L-1, respectively. The biosurfactant provided a Critical Micellar Concentration (CMC) of 20 mg.L-1. The batch method was used in the obtainment of removal data, in which a series of solutions at different concentrations of iron ions were exposed to different amounts of biosurfactant, both raw and purified, at a temperature of 25 °C, under agitation (200 rpm) and pH ~ 6.3. A multivariate experimental design was carried out in the presence of crude and purified biosurfactant. The results demonstrated significant interactions involved for the following independent variables: concentration of iron ions, concentration of biosurfactant and the treatment time. The iron removal percentages varied between 47.2% and 95.82% in the presence of the raw biosurfactant, and between 37.01% to 91.94% in the presence of the purified surfactant. The Langmuir adsorption model was the better adjusted, providing a maximum adsorption capacity at approximately 10 mg.g-1.

References

Aguiar, M. R. M. P., Novaes, A. C. & Guarino, A. W. S. (2002). Heavy metals removal from industrial effluents by aluminosilicates. Química Nova, 25, 1145-1154.

Al-Bahry, S. N. & Al-Wahaibi, Y. M. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation. 81, 141-146.

Almeida, D., Silva, R. D. C. S., Brasileiro, P., Luna, J., Silva, M. D. G., Rufino, R., Costa, A., Santos, V. A. & Sarubbo, L. (2018). Application of a biosurfactant from Candida tropicalis UCP 0996 produced in low-cost substrates for hydrophobic contaminants removal, Chemical Engineering Transactions, 64, 541-546.

Almeida, N., & Santos, K. (2020). Ensino do Laboratório de Engenharia Química baseado em projeto: adsorção de gasolina empregando casca de banana. Research, Society and Development, 9(3), e184932716.

Batista, R., Barony, F., Santos, A., Campos, K., Moreira, J., Penna, L. & Fioravante, I. (2020). Análise do teor de prata no efluente gerado pelo setor de radiologia em um hospital do Município de Governador Valadares, Minas Gerais, Brasil. Research, Society and Development, 9(7), e213973723.

Banat, L. M., Makkar, R. S. & Cameotra, S. S. (2000). Potencial Commercial application of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495-508.

Barros, F. F. C., Ponezi, A. N. & Pastore, G. M. (2008). Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. Journal of Industrial Microbiology and Biotechnology, 35, 1071-1078.

Brasil, J. L., Vaghetti, J. C. P., Royer, B., Santos Jr, A. A., Simon, N. M., Pavan, F. A., Dias, S. L. P. & Lima, E. C. (2007). Planejamento estatístico de experimentos como uma ferramenta para otimização das condições de biossorção de Cu (II) em batelada utilizando-se casca de nozes pecã como biossorvente. Química Nova, 30, 548-553.

Bugay, C. (2009). Biossurfactantes produzidos por Bacillus sp.: Estudos de produção e caracterização. 82 p. Dissertation (Graduate Program in Chemistry) - Federal University of Paraná, Curitiba.

Buratto, A. P., Costa, R. D. & Ferreira, E. S. (2012). Applications of fungal biomass from Pleurotus ostreatus in biosorption process that of copper ions (II). Associação Brasileira de Engenharia Sanitária e Ambiental, 17, 413 - 420.

Chooklin, C. S., Maneerat, S. & Saimmai, A. (2014). Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Applied Biochemistry and Biotechnology, 173, 624-645.

Colla, L. M., Hemkemeier, M. & Gil, A. S. L. (2012). Biossorção de cádmio e produção de biossurfactantes por fungos filamentosos em fermentação submersa. Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, 4, 1-10.

Costa G. A. N. (2005). Produção biotecnológica de surfactante de Bacillus subtilis em resíduo agroindustrial, caracterização e aplicações. 87 p. Dissertation (Graduate Program in Food Science), Campinas State University, Campinas.

Das, P., Mukherjee, S. & Sen, R. (2009). Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresource Technology, 100, 4887–4890.

Felix, A. K. N. (2012). Caracterização e estudo da aplicabilidade do biossurfactante produzido por Bacillus subtilis LAMI005 a partir do suco de caju. 103 p. Dissertation (Graduate Program in Chemical Engineering) - Federal University of Ceará, Fortaleza.

Franzetti, A., Gandolfi, I., Fracchia, L., Van Hamme, J., Gkorezis, P., Marchant, R., & Banat, I. (2014). Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. Biosurfactants, 361–370.

Ghojavand, H., Vahabzadeh, F., Royaei, E. & Shahraki, A. K. (2008). Production and properties of a biosurfactant obtained from member of the Bacillus subtilis group (PTCC 1696). Journal of Colloid and Interface Science, 324, 172-176.

Gnanamani, A., Kavitha, V., Radhakrishnan, N., Suseela Rajakumar, G., Sekaran, G., & Mandal, A. B. (2010). Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids and Surfaces B: Biointerfaces, 79, 334–339.

Gudina E. J., Teixeira J. A. & Rodrigues L. R. (2010). Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf. B: Biointerfaces, 76, 298-304

Jayabarath, J., Shyam, S., Arulmurugan, R. & Giridhar, R. (2009). Bioremediation of heavy metals using biosurfactants. International Journal of Biotechnology Application, 1, 50–54.

Juwarkar, A. A., Dubey, K. V., Nair, A., Singh, S. K. (2008). Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian Journal of Microbiology, 48, 142–146.

Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H. & Ho, H. H. (1997). Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84, 41-46.

Kuyukina M. S., Ivshina I. B., Philp J. C., Christofi N., Dunbar S.A. & Ritchkova M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156.

Liu, X., Ren, B., Gao, H., Liu, M., Dai, H., Song, F. & Zhang, L. (2012). Optimization for the production of surfactin with a new synergistic antifungal activity. PloS one, 7(5), e34430.

Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102, 558–566.

LURIA-BERTANI (LB) broth (10%). Cold Spring Harbor Protocols, 2010.

Medeiros, S. I. G. (2007). Síntese enzimática de biossurfactante e sua aplicabilidade na indústria do petróleo. 138 p. Dissertation (Graduate Program in Chemistry), Federal University of Rio Grande do Norte, Natal.

Mulligan, C. N., Yong, R. N. & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371-380.

Oliveira, D. W. F. (2010). Produção de biossurfactantes por Bacillus subtilis LAMI005 utilizando suco de caju clarificado. 163 p. Dissertation (Graduate Program in Chemical Engineering). Federal University of Ceará, Fortaleza.

Oliveira, D. W. F., França, I. W. L., Félix, A. K. N., Martins, J. J. L., Giroa, M. E. A., Melo, V. M. M. & Gonçalves, L. R. B. (2013). Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids and Surfaces B: Biointerfaces, 101, 34- 43.

Pinto, M. H., Martins, R. G. & Costa, J. A. V. (2009). Kinetic evaluation of the production of bacterial biosurfactants. Química Nova, 32 (8), 49-53.

Ramani, K., Jain, S. C., Mandal, A. B. & Sekaran, G. (2012). Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution. Colloids and Surfaces B: Biointerfaces, 97, 254–263.

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Santa Annam L. M., Sebastianm G. V., Menezes, E. P., Alves, T. L. M., Santos, A. S., Pereira Jr., N. & Freire, D. M. G. (2002). Production of Biosurfactants from Pseudomonas aeruginosa PA1 Isolated in Oil Environments. Brazilian Journal of Chemical Engineering, 19, 159-166.

Soares, C. C. (2018). Kinetic study of the production of biosurfactant by Bacillus Subtilis UFPEDA 86 using residues from fruit processing as a substrate. 114 p. Dissertation (Graduate Program in Chemical Engineering). Federal University of Bahia, Salvador.

Soussi, S., Essid, R., Hardouin, J., Gharbi, D., Cosette, P., Jouenne, T. & Limam, F. (2019). Utilization of grape seed flour for antimicrobial lipopeptide production by Bacillus amyloliquefaciens C5 Strain. Applied Biochemistry and Biotechnology, 187, 1460–1474.

Souza, O., Schulz, M. A., Fischer, G. A. A., Wagner, T. M. & Sellin, N. (2012). Energia alternativa de biomassa: bioetanol a partir da casca e da polpa de banana. Revista Brasileira de Engenharia Agrícola e Ambiental, 16, 915-921.

Tríboli, E. P. D. R (1989). Métodos analíticos para o acompanhamento da fermentação alcoólica. 52f. Apostille – Laboratory of Biochemical and Food Engineering, Mauá Engineering School, Mauá Institute of Technology, São Caetano do Sul.

Valdman, E., Leite, S. G. & Caldas, S. M. (2005). Effect of biosurfactant concentration on cadmium biosorption by Serratia sp isolated from tropical soil. In: Proceedings of XIII International Conference on Heavy Metals in the Environment, Rio de Janeiro, Rio de Janeiro.

Vaz, D. A., Gudiña, E. J., Alameda, E. J., Teixeira, J. A. & Rodrigues, L. R. (2012). Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids and Surfaces B: Biointerfaces, 89, 167-174.

Vieira, R. S. (2008). Adsorção competitiva dos íons cobre e mercúrio em membranas de quitosana natural e reticulada. 162p. Thesis (Graduate Program in Chemical Engineering), Campinas State University, Campinas.

Yıldız, S., Çekim, M. & Dere, T. (2017). Biosorption of Cu(2+) and Ni(2+) Ions from Synthetic Waters. Applied Biochemical Biotechnology, 183, 332-347.

Yuan, X. Z., Meng, Y. T., Zeng, G. M., Fang, Y. Y. & Shi, J. G. (2008). Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 256-261.

Downloads

Published

21/05/2020

How to Cite

FREIRE, A. de A.; SIMONELLI, G.; ASSIS, D. de J.; DRUZIAN, J. I.; LOBATO, A. K. de C. L. Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption. Research, Society and Development, [S. l.], v. 9, n. 7, p. e437974077, 2020. DOI: 10.33448/rsd-v9i7.4077. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4077. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings