Intestinal dysbiosis in obese: Literature review
DOI:
https://doi.org/10.33448/rsd-v12i4.40980Keywords:
Microbiome; Prebiotics; Obesity; Dysbiosis.Abstract
Obesity is characterized by the excess of adipose tissue in the individual's body composition, resulting from a caloric intake greater than energy expenditure combined with multifactors, especially genetics, the environment and sedentary behavior. The eating habits of a western diet (foods rich in saturated fats, refined sugars and low fiber and polyphenol intake) influence the lower diversity of the phylum Bacterioidetes, characterizing the condition of intestinal dysbiosis. This narrative review article aimed to describe the relationship between obesity and dysbiosis, and reporting some metabolic aspects of obesity, emphasizing changes in the intestinal microbiota. Intestinal dysbiosis allied to poor eating habits weakens the junction of firmly adherent cells in the intestine, causing greater intestinal permeability that results in low-grade systemic inflammation due to the recruitment of immune cells and the increase of inflammatory proteins [factor of tumor necrosis (TNF-α), interleukin 6 (IL-6)] and reactive oxygen species (ROS), due to translocation of gram-negative bacteria and their toxic metabolites known as lipopolysaccharides (LPS) into the serum. A lower microbial diversity among the phyla characterizing intestinal dysbiosis. As a result, some treatments such as the use of prebiotics and probiotics combined with a balanced diet rich in whole grains, low in refined sugars and saturated fatty acids can increase the diversity of the microbiome reducing these inflammatory markers, and improving important biochemical parameters with o blood glucose and serum triglycerides.
References
Ahmad, B., Vohra, M. S., Saleemi, M. A., Serpell, C. J., Fong, I. L., & Wong, E. H. (2021). Brown/beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie, 184, 26-39. 10.1016/j.biochi.2021.01.015.
Ahmad, R., Sorrell, M. F., Batra, S. K., Dhawan, P., & Singh, A. B. (2017). Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunology, 10, 307-317. https://doi.org/10.1038/mi.2016.128.
Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy, 137, 111315. https://DOI.org/10.1016/j.biopha.2021.111315.
An, Y. A., Chen, S., Deng, Y., Wang, Z. V., Funcke, J-B., Shah, M., et al. (2021). The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis. Journal of Hepatology, 75, 387-399. https://DOI.org/10.1016/j.jhep.2021.03.006.
Andremont, A., Cervesi, J., Bandinelli, P-A., Vitry, F., & Gunzburg, J. (2021). Spare and repair the gut microbiota from antibiotic-induced dysbiosis: state-of-the-art. Drug Discovery Today, 26, 2159-2163. 10.1016/j.drudis.2021.02.022.
Andreoli, M. F., Donato, J., Cakir, I., & Perello, M. (2019). Leptin resensitisation: a reversion of leptin-resistant states. Journal of Endocrinology, 241, R81-R96. 10.1530/JOE-18-0606.
Antushevich, H. (2020). Fecal microbiota transplantation in disease therapy. Clinica Chimica Acta, 503, 90-98. https://DOI.org/10.1016/j.cca.2019.12.010.
Bajer, B., Rádiková, Ž., Havranová, A., Žitňanová, I., Vlček, M., Imrich, R., et al. (2019). Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions. Obesity Research & Clinical Practice, 13, 586-593. https://DOI.org/10.1016/j.orcp.2019.10.010.
Barakat, B., & Almeida, M. E. F. (2021). Biochemical and immunological changes in obesity. Archives of Biochemistry and Biophysics, 708, 108951. https://DOI.org/10.1016/j.abb.2021.108951.
Benakis, C., Martin-Gallausiaux, C., Trezzi, J-P., Melton, P., Liesz, A., & Wilmes, P. (2020). The microbiome-gut-brain axis in acute and chronic brain diseases. Current Opinion in Neurobiology, 61, 1-9. https://DOI.org/10.1016/j.conb.2019.11.009.
Bernard, A., Ancel, D., Passilly-Degrace, P., Landrier, J-F., Lagrost, L., & Besnard, P. (2019). A chronic LPS-induced low-grade inflammation fails to reproduce in lean mice the impairment of preference for oily solution found in diet-induced obese mice. Biochimie, 159, 112-121. https://DOI.org/10.1016/j.biochi.2018.08.004.
Butler, M. J. (2021). The role of Western diets and obesity in peripheral immune cell recruitment and inflammation in the central nervous system. Brain, Behavior, & Immunity - Health, 16, 100298. 10.1016/j.bbih.2021.100298.
Casertano, M., Fogliano, V., & Ercolini, D. (2022). Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Research International, 152, 110892. 10.1016/j.foodres.2021.110892.
Cerdó, T., García-Santos, J. A., Bermúdez, M. G., & Campoy, C. (2019). The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients, 11, 635. 10.3390/nu11030635.
Chen, Y., Pan, R., & Pfeifer, A. (2017). Regulation of brown and beige fat by microRNAs. Pharmacology & Therapeutics, 170, 1-7. https://doi.org/10.1016/j.pharmthera.2016.10.004.
Chidambaram, S. B., Essa, M. M., Rathipriya, A. G., Bishir, M., Ray, B., Mahalakshmi, A. M., et al. (2021). Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacology & Therapeutics, 231, 107988. 10.1016/j.pharmthera.2021.107988.
Dailey, F. E., Turse, E. P., Daglilar, E., & Tahan, V. (2019). The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Current Opinion in Pharmacology, 49, 29-33. https://doi.org/10.1016/j.coph.2019.04.008.
Ding, X., Yang, X., & Wang, H. (2020). Methodology, efficacy and safety of fecal microbiota transplantation in treating inflammatory bowel disease. Medicine in Microecology, 6, 100028. https://doi.org/10.1016/j.medmic.2020.100028.
Dodangeh, M., & Dodangeh, M. (2020). Metabolic regulation and the anti-obesity perspectives of brown adipose tissue (BAT); a systematic review. Obesity Medicine, 17, 100163. https://doi.org/10.1016/j.obmed.2019.100163.
Du, Y., Gao, X-R., Peng, L., & Ge, J-F. (2020). Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6, e04097. 10.1016/j.heliyon.2020.e04097.
Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73, 1073-1078. 10.1128/aem.02340-06.
Duque, A. L. R. F., Demarqui, F. M., Santoni, M. M., Zanelli, C. F., Adorno, M. A. T., Milenkovic, D., et al. (2021). Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Research International, 149, 110657. https://doi.org/10.1016/j.foodres.2021.110657.
Fried, S., Wemelle, E., Cani, P. D., & Knauf, C. (2021). Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 197, 108721. https://doi.org/10.1016/j.neuropharm.2021.108721.
Fujimoto, K., Kimura, Y., Allegretti, J. R., Yamamoto, M., Zhang, Y-Z., Katayama, K., et al. (2021). Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology, 160, 2089-2102. https://doi.org/10.1053/j.gastro.2021.02.013.
Gesù, C. M., Matz, L. M., & Buffington, S. A. (2021). Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 168, 3-19. https://DOI.org/10.1016/j.neures.2021.05.003.
Ghanbari, M., Maragheh, S. M., Aghazadeh, A., Mehrjuyan, S. R., Hussen, B. M., Shadbad, M. A., et al. (2021). Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. International Immunopharmacology, 96, 107765. 10.1016/j.intimp.2021.107765.
Haran, J. P., & McCormick, B. A. (2021). Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease. Gastroenterology, 160, 507-523. https://doi.org/10.1053/j.gastro.2020.09.060.
Hasan, R. A., Coughlin, L., Poulides, N., Zhan, X., Zia, A., & Koh, A. Y. (2020). Gut microbiota dysbiosis and elevated lipopolysaccharide serum levels are associated with venous thromboembolism in pediatric patients. Blood, 136, 6-7. https://DOI.org/10.1182/blood-2020-134335.
Hills, R. D., Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut microbiome: profound implications for diet and disease. Nutrients, 11, 1613. https://doi.org/10.3390/nu11071613.
Hristov, M., Landzhov, B., & Yakimova, K. (2020). Cafeteria diet-induced obesity reduces leptin-stimulated NADPH-diaphorase reactivity in the hypothalamic arcuate nucleus of rats. Acta Histochemica, 122, 151616. https://doi.org/10.1016/j.acthis.2020.151616.
Kasai, C., Sugimoto, K., Moritani, I., Tanaka, J., Oya, Y., Inoue, H., et al. (2015). Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 15, 1-10. https://doi.org/10.1186/s12876-015-0330-2.
Kendig, M. D., Leigh, S-J., & Morris, M. J. (2021). Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neuroscience & Biobehavioral Reviews, 128, 233-243. https://DOI.org/10.1016/j.neubiorev.2021.05.031.
Kim, Y. A., Keogh, J. B., & Clifton, P. M. (2018). Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 31, 35-51. 10.1017/s095442241700018x.
Klepac, K., Georgiadi, A., Tschöp, M., & Herzig, S. (2019). The role of brown and beige adipose tissue in glycaemic control. Molecular Aspects of Medicine, 68, 90-100. https://doi.org/10.1016/j.mam.2019.07.001.
Kong, C., Gao, R., Yan, X., Huang, L., & Qin, H. (2019). Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 60, 175-184. 10.1016/j.nut.2018.10.002.
Li, J., Chen, C., Yang, H., & Yang, X. (2021). Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice. Food Research International, 141, 110153. 10.1016/j.foodres.2021.110153.
Liébana-García, R., Olivares, M., Bullich-Vilarrubias, C., López-Almela, I., Romaní-Pérez, M., & Sanz, Y. (2021) The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice & Research Clinical Endocrinology & Metabolism, 35, 101542. 10.1016/j.beem.2021.101542.
Liu, S., Gao, J., Liu, K., & Zhang, H-L. (2021) Microbiota-gut-brain axis and Alzheimer’s disease: Implications of the blood-brain barrier as an intervention target. Mechanisms of Ageing and Development, 199, 111560. https://doi.org/10.1016/j.mad.2021.111560.
Lorenzo, A., Romano, L., Renzo, L., Lorenzo, N., Cenname, G., & Gualtieri, P. (2020). Obesity: A preventable, treatable, but relapsing disease. Nutrition, 71, 110615. 10.1016/j.nut.2019.110615.
Ma, H-D., Zhao, Z-B., Ma, W-T., Liu, Q-Z., Gao, C-Y., Li, L., et al. (2018). Gut microbiota translocation promotes autoimmune cholangitis. Journal of Autoimmunity, 95, 47-57. https://doi.org/10.1016/j.jaut.2018.09.010.
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients, 12, 1474. 10.3390/nu12051474.
Marques, D. O., & Quintilio, M. S. V. (2021). Farmacologia e riscos das drogas para emagrecer. Revista Coleta Científica, 5, 38-49. https://doi.org/10.5281/zenodo.5093482.
Mcmanus, K., & Temples, H. (2021). Obesity in adolescents: prevention and treatment to change their future. The Journal for Nurse Practitioners, 17, 972-978. 10.1016/j.nurpra.2021.04.018.
Molina-Tijeras, J. A., Diez-Echave, P., Vezza, T., Hidalgo-García, L., Ruiz-Malagón, A. J., Rodríguez-Sojo, M. J., et al. (2021). Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research, 167, 105471. https://doi.org/10.1016/j.phrs.2021.105471.
Moonen, M. P. B., Nascimento, E. B. M., & Lichtenbelt, W. D. M. (2019). Human brown adipose tissue: Underestimated target in metabolic disease? Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864, 104-112. 10.1016/j.bbalip.2018.05.012.
Moreira Júnior, R. E., Carvalho, L. M., Reis, D. C., Cassali, G. D., Faria, A. M. C., Maioli, T. U., et al. (2021). Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice. The Journal of Nutritional Biochemistry, 92, 108622. https://doi.org/10.1016/j.jnutbio.2021.108622.
Natividad, J. M., Lamas, B., Pham, H. P., Michel, M-L., Rainteau, D., Bridonneau, C., et al. (2018). Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Communications, 9, 2802. https://doi.org/10.1038/s41467-018-05249-7.
Nicolucci, A. C., Hume, M. P., Martínez, I., Mayengbam, S., Walter, J., & Reimer, R. A. (2017). Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology, 153, 711-722. 10.1053/j.gastro.2017.05.055.
Oh, Y. J., Nam, K., Kim, Y., Lee, S. Y., Kim, H. S., Kang, J., et al. (2021). Effect of a nutritionally balanced diet comprising whole grains and vegetables alone or in combination with probiotic supplementation on the gut microbiota. Preventive Nutrition and Food Science, 26, 121-131. 10.3746/pnf.2021.26.2.121.
Palmas, V., Pisanu, S., Madau, V., Casula, E., Deledda, A., Cusano, R., et al. (2021). Gut microbiota markers associated with obesity and overweight in Italian adults. Scientific Reports, 11, 5532. https://doi.org/10.1038/s41598-021-84928-w.
Parussolo, G. S., Barakat, B., Ribeiro, M. G. C., Vinha, L. I. L., Santana, B. F., Moreira, M. M., et al. (2022). Manejo da obesidade: uma revisão narrativa dos tratamentos com foco na cirurgia metabólica. Research, Society and Development, 11, 13711326129. 10.33448/rsd-v11i3.26129.
Paz, S. M., Pérez-Pérez, A., Vilariño-García, T., Jiménez-Cortegana, C., Muriana, F. J. G., Millán-Linares, M. C., et al. (2021). Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. The Journal of Nutritional Biochemistry, 89, 108561. https://doi.org/10.1016/j.jnutbio.2020.108561.
Pendyala, S., Walker, J. M., & Holt, P. R. (2012). A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology, 142, 1100-1101. https://doi.org/10.1053/j.gastro.2012.01.034.
Peng, J., Yin, L., & Wang, X. (2021). Central and peripheral leptin resistance in obesity and improvements of exercise. Hormones and Behavior, 133, 105006. https://doi.org/10.1016/j.yhbeh.2021.105006.
Perakakis, N., Farr, O. M., & Mantzoros, C. S. (2021). Leptin in leanness and obesity: Leptin in leanness and obesity: JACC state-of-the-art review. Journal of the American College of Cardiology, 77, 745-760. https://doi.org/10.1016/j.jacc.2020.11.069.
Pérez-Hernández, E. G., Delgado-Coello, B., Luna-Reyes, I., & Mas-Oliva, J. (2021). New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomedicine & Pharmacotherapy, 141, 111890. 10.1016/j.biopha.2021.111890.
Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto Jr, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nature Reviews Cardiology, 18, 712-723. https://doi.org/10.1038/s41569-021-00538-z.
Quintanilha, B. J., Ferreira, L. R. P., Ferreira, F. M., Cunha Neto, E., Sampaio, G. R., & Rogero, M. M. (2020). Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clinical Nutrition, 39, 554-562. https://doi.org/10.1016/j.clnu.2019.02.042.
Rampelli, S., Guenther, K., Turroni, S., Wolters, M., Veidebaum, T., Kourides, Y., et al. (2018). Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 1, 1-11. https://doi.org/10.1038/s42003-018-0221-5.
Ranjbar, R., Vahdati, S. N., Tavakoli, S., Khodaie, R., & Behboudi, H. (2021). Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomedicine & Pharmacotherapy, 141, 111817. 10.1016/j.biopha.2021.111817.
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., et al. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7, 1-22. 10.3390/microorganisms7010014.
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104, S1-63. 10.1017/s0007114510003363.
Saiyasit, N., Chunchai, T., Prus, D., Suparan, K. K., Pittayapong, P., Apaijai, N., et al. (2020). Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition, 69, 110576. 10.1016/j.nut.2019.110576.
Sakkas, H., Bozidis, P., Touzios, C., Kolios, D., Athanasiou, G., Athanasopoulou, E., et al. (2020). Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina, 56, 88. 10.3390/medicina56020088.
Sarkar, S. R., Mazumder P. M., & Banerjee, S. (2020). Probiotics protect against gut dysbiosis associated decline in learning and memory. Journal of Neuroimmunology, 348, 577390. https://doi.org/10.1016/j.jneuroim.2020.577390.
Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research, 57, 943-954. 10.1194/jlr.r067629.
Seaman, D. R. (2016). Toxins, toxicity, and endotoxemia: a historical and clinical perspective for chiropractors. Journal of Chiropractic Humanities, 23, 68-76. https://doi.org/10.1016/j.echu.2016.07.003.
Seong, H., Lee, S. K., Cheon, J. H., Yong, D. E., Koh, H., Kang, Y. K., et al. (2020). Fecal microbiota transplantation for multidrug-resistant organism: Efficacy and response prediction. Journal of Infection, 81, 719-725. https://doi.org/10.1016/j.jinf.2020.09.003.
Settanni, C. R., Ianiro, G., Bibbò, S., Cammarota, G., & Gasbarrini, A. (2021). Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, 110258. https://doi.org/10.1016/j.pnpbp.2021.110258.
Simpson, H. L., & Campbell, B. J. (2015). Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology & Therapeutics, 42, 158-179. 10.1111/apt.13248.
Singh, D., Khan, M. A., & Siddique, H. R. (2021). Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sciences, 285, 120008. https://doi.org/10.1016/j.lfs.2021.120008.
Singh, R. K., Chang, H-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15, 73. 10.1186/s12967-017-1175-y.
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212-215. 10.1038/nature16504.
Soppert, J., Lehrke, M., Marx, N., Jankowski, J., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Advanced Drug Delivery Reviews, 159, 4-33. https://doi.org/10.1016/j.addr.2020.07.019.
Stumpff, F. (2018). A look at the smelly side of physiology: transport of short chain fatty acids. Pflügers Archiv - European Journal of Physiology, 470, 571-598. 10.1007/s00424-017-2105-9.
Su, X., & Peng, D. (2020). Adipokines as novel biomarkers of cardio-metabolic disorders. Clinica Chimica Acta, 507, 31-38. https://doi.org/10.1016/j.cca.2020.04.009.
Sun, M-F., & Shen, Y-Q. (2018). Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Research Reviews, 45, 53-61. https://doi.org/10.1016/j.arr.2018.04.004.
Sun, S., Araki, Y., Hanzawa, F., Umeki, M., Kojima, T., Nishimura, N., et al. (2021). High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. The Journal of Nutritional Biochemistry, 93, 108621. https://doi.org/10.1016/j.jnutbio.2021.108621.
Vaziri, N. D. (2016). HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nature Reviews Nephrology, 12, 37-47. https://doi.org/10.1038/nrneph.2015.180.
Wang, J-W., Kuo, C-H., Kuo, F-C., Wang, Y-K., Hsu, W-H., Yu, F-J., et al. (2019). Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association, 118, S23-S31. https://doi.org/10.1016/j.jfma.2018.08.011.
Wang, L., Zhao, D., Tang, L., Li, H., Liu, Z., Gao, J., et al. (2021). Soluble epoxide hydrolase deficiency attenuates lipotoxic cardiomyopathy via upregulation of AMPK-mTORC mediated autophagy. Journal of Molecular and Cellular Cardiology, 154, 80-91. https://doi.org/10.1016/j.yjmcc.2020.12.013.
White, J. D., Dewal, R. S., & Stanford, K. I. (2019). The beneficial effects of brown adipose tissue transplantation. Molecular Aspects of Medicine, 68, 74-81. https://doi.org/10.1016/j.mam.2019.06.004.
Woźniak, D., Cichy, W., Przysławski, J., & Drzymała-Czyż, S. (2021). The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Advances in Medical Sciences, 66, 284-292. 10.1016/j.advms.2021.05.003.
Wu, W., Kong, Q., Tian, P., Zhai, Q., Wang, G., Liu, X., et al. (2020). Targeting gut microbiota dysbiosis: potential intervention strategies for neurological disorders. Engineering, 6, 415-423. https://doi.org/10.1016/j.eng.2019.07.026.
Yu, Y., & Zhao, F. (2021). Microbiota-gut-brain axis in autism spectrum disorder. Journal of Genetics and Genomics, 48, 755-762. https://doi.org/10.1016/j.jgg.2021.07.001.
Yuzefpolskaya, M., Bohn, B., Nasiri, M., Zuver, A. M., Onat, D. D., Royzman, E. A., et al. (2020). Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. The Journal of Heart and Lung Transplantation, 39, 880-890. https://doi.org/10.1016/j.healun.2020.02.004.
Zhang, P., Konja, D., & Wang, Y. (2020). Adipose tissue secretory profile and cardiometabolic risk in obesity. Endocrine and Metabolic Science, 1, 100061. https://doi.org/10.1016/j.endmts.2020.100061.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lucas Inácio de Loyola Vinha; Martha Elisa Ferreira de Almeida; Beatriz Barakat ; Bianca Ferreira de Santana; Madalena Geralda Cupertino Ribeiro; Gabrielly Senna Parussolo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.