Adsorption of pollutants in wastewater using biochar: a systematic review
DOI:
https://doi.org/10.33448/rsd-v12i4.41228Keywords:
Biochar; Filtration; Sewage; Contaminants.Abstract
Adsorption has been used in the treatment of wastewater for the removal of pollutants and has a low cost, requires low space for implementation and is simple to operate. When using biochar as an adsorbent material, adsorption becomes more sustainable, as it allows recycling of organic waste. This study aimed to investigate literature on the use of biochar as a pollutant adsorbent in wastewater, in order to verify its efficiency, application parameters and research gaps. Quantitative analysis was carried out, with articles’ categorization according to type of pollutant, year, and location of experiments. Therefore, qualitative aspects were analysed, such as pH, adsorption temperature, pyrolysis temperature, raw material and biochar activation, adsorption kinetics and isotherms, removal efficiency and adsorption capacity. It was observed that the studies are still recent, carried out in small scale and that researchers were typically concerned with the removal of emerging micropollutants. The most adopted pyrolysis temperature was between 400°C and 800°C and adsorption enhanced with increasing temperature by up to 45°C. The raw materials used were diverse and they were usually available in the study region. Moreover, biochar showed greater efficiencies when activated. The pseudo second order kinetic model and the Langmuir isotherm were the ones that best fit most of the experiments. Finally, research gaps were identified concerning economic aspects, regeneration and discharge processes of biochar, and efficiency with non-synthetic effluents.
References
Ahmed, M. J., & Dhedan, S. K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria, 317, 9–14. https://doi.org/10.1016/j.fluid.2011.12.026
Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/s13762-020-03060-w
Aquino, S. F. de, Brandt, E. M. F., & Chernicharo, C. A. de L. (2013). Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura. Engenharia Sanitaria e Ambiental, 18(3), 187–204. https://doi.org/10.1590/S1413-41522013000300002
Beakou, B. H., Hassani, K. E., Houssaini, M. A., Belbahloul, M., Oukani, E., & Anouar, A. (2017). A novel biochar from Manihot esculenta Crantz waste: Application for the removal of Malachite Green from wastewater and optimization of the adsorption process. Water Science & Technology, 76(6), 1447–1456. https://doi.org/10.2166/wst.2017.332
Borthakur, P., Aryafard, M., Zara, Z., David, Ř., Minofar, B., Das, M. R., & Vithanage, M. (2021). Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment. Journal of Environmental Management, 283, 111989. https://doi.org/10.1016/j.jenvman.2021.111989
Bu, J., Li, W., Niu, N., Guo, N., Zhou, H., Chen, C., & Ding, A. (2021). Adsorption of Cr(VI) from wastewater by iron-modified coconut shell biochar. E3S Web of Conferences, 248, 01059. https://doi.org/10.1051/e3sconf/202124801059
Caprariis, B., De Filippis, P., Hernandez, A. D., Petrucci, E., Petrullo, A., Scarsella, M., & Turchi, M. (2017). Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. Journal of Environmental Management, 197, 231–238. https://doi.org/10.1016/j.jenvman.2017.04.007
Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., & Lu, W. (2015). Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere, 134, 286–293. https://doi.org/10.1016/j.chemosphere.2015.04.052
Córdova, B. M., Santa Cruz, J. P., Ocampo M., T. V., Huamani-Palomino, R. G., & Baena-Moncada, A. M. (2020). Simultaneous adsorption of a ternary mixture of brilliant green, rhodamine B and methyl orange as artificial wastewater onto biochar from cocoa pod husk waste. Quantification of dyes using the derivative spectrophotometry method. New Journal of Chemistry, 44(20), 8303–8316. https://doi.org/10.1039/D0NJ00916D
Cuba, R. M. F., Paula, B. M. de, Vale, G. B. do, Braga, T. C., & Terán, F. J. C. (2021). Biocarvão ativado produzido a partir de lodo anaeróbio de estação de tratamento de efluentes para remoção do corante tartrazina. Matéria (Rio de Janeiro), 26(4), e13109. https://doi.org/10.1590/s1517-707620210004.1309
Dai, Q., Xiang, W., Liu, Q., Wang, M., & Zhang, X. (2022). Co-pyrolysis biochar derived from sewage sludge and lignin: Synergetic effect and adsorption properties. Journal of Environmental Chemical Engineering, 10(3), 107898. https://doi.org/10.1016/j.jece.2022.107898
Dalahmeh, S., Ahrens, L., Gros, M., Wiberg, K., & Pell, M. (2018). Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm. Science of The Total Environment, 612, 192–201. https://doi.org/10.1016/j.scitotenv.2017.08.178
Dalahmeh, S. S., Alziq, N., & Ahrens, L. (2019). Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per- and polyfluoroalkyl substances in laboratory column experiments. Environmental Pollution, 247, 155–164. https://doi.org/10.1016/j.envpol.2019.01.032
Dong, L., Li, S., Jin, Y., Hu, B., & Sheng, G. (2021). Enhanced adsorption of Eu(III) from wastewater using Solidago canadensis-derived biochar functionalized by Ca/Al-LDH and hydroxyapatite. Applied Surface Science, 567, 150794. https://doi.org/10.1016/j.apsusc.2021.150794
Ercole, F. F., Melo, L. S. de, & Alcoforado, C. L. G. C. (2014). Integrative review versus systematic review. Reme: Revista Mineira de Enfermagem, 18(1). https://doi.org/10.5935/1415-2762.20140001
Escudero-Curiel, S., Penelas, U., Sanromán, M. Á., & Pazos, M. (2021). An approach towards Zero-Waste wastewater technology: Fluoxetine adsorption on biochar and removal by the sulfate radical. Chemosphere, 268, 129318. https://doi.org/10.1016/j.chemosphere.2020.129318
Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5(1), 601–611. https://doi.org/10.1016/j.jece.2016.12.019
Fernandes, J. O., Bernardino, C. A. R., Mahler, C. F., Santelli, R. E., Braz, B. F., Borges, R. C., da Cunha Veloso, M. C., Romeiro, G. A., & Cincotto, F. H. (2021). Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water, Air, & Soil Pollution, 232(2), 67. https://doi.org/10.1007/s11270-021-05030-5
Fu, C., Zhu, X., Dong, X., Zhao, P., & Wang, Z. (2021). Study of adsorption property and mechanism of lead(II) and cadmium(II) onto sulfhydryl modified attapulgite. Arabian Journal of Chemistry, 14(2), 102960. https://doi.org/10.1016/j.arabjc.2020.102960
Fu, X., Wang, P., Wu, J., Zheng, P., Wang, T., Li, X., & Ren, M. (2022). Hydrocotyle vulgaris derived novel biochar beads for phosphorus removal: Static and dynamic adsorption assessment. Journal of Environmental Chemical Engineering, 10(4), 108177. https://doi.org/10.1016/j.jece.2022.108177
Galus, M., Jeyaranjaan, J., Smith, E., Li, H., Metcalfe, C., & Wilson, J. Y. (2013). Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquatic Toxicology, 132–133, 212–222. https://doi.org/10.1016/j.aquatox.2012.12.016
Hamadeen, H. M., & Elkhatib, E. A. (2022). New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms. Environmental Research, 210, 112929. https://doi.org/10.1016/j.envres.2022.112929
Hashem, M. A., Hasan, M., Momen, M. A., Payel, S., & Nur-A-Tomal, M. S. (2020). Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environmental and Sustainability Indicators, 5, 100022. https://doi.org/10.1016/j.indic.2020.100022
Hu, H., Zhang, J., Wang, T., & Wang, P. (2022). Adsorption of toxic metal ion in agricultural wastewater by torrefaction biochar from bamboo shoot shell. Journal of Cleaner Production, 338, 130558. https://doi.org/10.1016/j.jclepro.2022.130558
Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072
Jiang, Y.-H., Li, A.-Y., Deng, H., Ye, C.-H., & Li, Y. (2019). Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar. Environmental Science and Pollution Research, 26(18), 18343–18353. https://doi.org/10.1007/s11356-019-05183-1
Kalderis, D., Kayan, B., Akay, S., Kulaksız, E., & Gözmen, B. (2017). Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. Journal of Environmental Chemical Engineering, 5(3), 2222–2231. https://doi.org/10.1016/j.jece.2017.04.039
Khalid, W., Cheng, C. K., Liu, P., Tang, J., Liu, X., Ali, A., Shahab, A., & Wang, X. (2022). Fabrication and characterization of a novel Ba2+-loaded sawdust biochar doped with iron oxide for the super-adsorption of SO42− from wastewater. Chemosphere, 303, 135233. https://doi.org/10.1016/j.chemosphere.2022.135233
Komolafe, O., Mrozik, W., Dolfing, J., Acharya, K., Vassalle, L., Mota, C. R., & Davenport, R. (2021). Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. Journal of Environmental Management, 287, 112286. https://doi.org/10.1016/j.jenvman.2021.112286
Konneh, M., Wandera, S. M., Murunga, S. I., & Raude, J. M. (2021). Adsorption and desorption of nutrients from abattoir wastewater: Modelling and comparison of rice, coconut and coffee husk biochar. Heliyon, 7(11), e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
Kosaiyakanon, C., & Kungsanant, S. (2020). Adsorption of Reactive Dyes from Wastewater Using Cationic Surfactant-modified Coffee Husk Biochar. Environment and Natural Resources Journal, 18(1), 21–32. https://doi.org/10.32526/ennrj.18.1.2020.03
Kumi, A. G., Ibrahim, M. G., Nasr, M., & Fujii, M. (2020). Synthesis, characterization and adsorption properties of sewage sludge derived biochar modified with eggshell. 2020 Advances in Science and Engineering Technology International Conferences (ASET), 1–4. https://doi.org/10.1109/ASET48392.2020.9118226
Lei, W., Li, T. T., Lv, N. Q., Liu, H., Zhang, Y., & Xi, B. D. (2019). Study on adsorption of lead by biochar prepared from sludge of municipal wastewater treatment plant. IOP Conference Series: Materials Science and Engineering, 479, 012007. https://doi.org/10.1088/1757-899X/479/1/012007
Li, A., Deng, H., Jiang, Y., & Ye, C. (2020). High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials, 13(4), 947. https://doi.org/10.3390/ma13040947
Li, J., Li, B., Huang, H., Zhao, N., Zhang, M., & Cao, L. (2020). Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Science of The Total Environment, 714, 136839. https://doi.org/10.1016/j.scitotenv.2020.136839
Li, J., Yu, G., Pan, L., Li, C., You, F., & Wang, Y. (2020). Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste. Environmental Science and Pollution Research, 27(18), 22806–22817. https://doi.org/10.1007/s11356-020-08333-y
Li, X., & Shi, J. (2022). Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism. Chemosphere, 293, 133574. https://doi.org/10.1016/j.chemosphere.2022.133574
Liao, J., Ding, L., Zhang, Y., & Zhu, W. (2022). Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. Journal of Hazardous Materials, 423, 127190. https://doi.org/10.1016/j.jhazmat.2021.127190
Lima, D. R. (2017). Adsorção do corante verde malaquita utilizando palha de milho modificada por ultrassom.
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J. O., He, Y., Zhang, Y., & Yap, P.-S. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10(1), 106502. https://doi.org/10.1016/j.jece.2021.106502
Lv, B., Zhang, W., Xu, D., Li, S., Hu, J., & Fan, X. (2022). Influence of Different Metals on Production of Sewage Sludge–Based Biochar and Its Application for Ammonium and Phosphate Adsorption Removal from Wastewater. Journal of Environmental Engineering, 148(9), 04022051. https://doi.org/10.1061/(ASCE)EE.1943-7870.0002039
Mamera, M., van Tol, J. J., & Aghoghovwia, M. P. (2022). Treatment of faecal sludge and sewage effluent by pinewood biochar to reduce wastewater bacteria and inorganic contaminants leaching. Water Research, 221, 118775. https://doi.org/10.1016/j.watres.2022.118775
Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36–41. https://doi.org/10.1016/j.tim.2013.11.001
Nascimento, B. F., Araujo, C. M. B., Nascimento, A. C., Costa, G. R. B., Gomes, B. F. M. L., da Silva, M. P., da Silva Santos, R. K., & da Motta Sobrinho, M. A. (2021). Adsorption of Reactive Black 5 and Basic Blue 12 using biochar from gasification residues: Batch tests and fixed-bed breakthrough predictions for wastewater treatment. Bioresource Technology Reports, 15, 100767. https://doi.org/10.1016/j.biteb.2021.100767
ONU. (2020). Mais de 4,2 bilhões de pessoas vivem sem acesso a saneamento básico. Organização Das Nações Unidas. https://brasil.un.org/pt-br/101526-mais-de-42-bilh%C3%B5es-de-pessoas-vivem-sem-acesso-saneamento-b%C3%A1sico
Piekarski, J., Dąbrowski, T., Dąbrowski, J., & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced.
Regkouzas, P., & Diamadopoulos, E. (2019). Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere, 224, 840–851. https://doi.org/10.1016/j.chemosphere.2019.02.165
Salehi, E., Askari, M., Velashjerdi, M., & Arab, B. (2020). Phosphoric acid-treated Spent Tea Residue Biochar for Wastewater Decoloring: Batch Adsorption Study and Process Intensification using Multivariate Data-based Optimization. Chemical Engineering and Processing - Process Intensification, 158, 108170. https://doi.org/10.1016/j.cep.2020.108170
Sewu, D. D., Lee, D. S., Woo, S. H., & Kalderis, D. (2021). Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison. Korean Journal of Chemical Engineering, 38(3), 531–539. https://doi.org/10.1007/s11814-020-0727-7
Shafiq, M., Alazba, A. A., & Amin, M. T. (2021). Kinetic and Isotherm Studies of Ni2+ and Pb2+ Adsorption from Synthetic Wastewater Using Eucalyptus camdulensis—Derived Biochar. Sustainability, 13(7), 3785. https://doi.org/10.3390/su13073785
Shang, W., Liu, Y., He, Q., Liu, S., Zhu, Y., Tong, T., & Liu, B. (2020). Efficient adsorption of organic matters and ions by porous biochar aerogel as pre-treatment of ultrafiltration for shale gas wastewater reuse. Chemical Engineering Journal Advances, 2, 100011. https://doi.org/10.1016/j.ceja.2020.100011
Shi, Y., Hu, H., & Ren, H. (2020). Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms. Bioresource Technology, 297, 122281. https://doi.org/10.1016/j.biortech.2019.122281
Silva, W. L., Muraro, P. C. L., Pavoski, G., Espinosa, D. C. R., & dos Santos, J. H. Z. (2022). Preparation and characterization of biochar from cement waste for removal of rhodamine B dye. Journal of Material Cycles and Waste Management, 24(4), 1333–1342. https://doi.org/10.1007/s10163-022-01416-7
Singh, S., Prajapati, A. K., Chakraborty, J. P., & Mondal, M. K. (2021). Adsorption potential of biochar obtained from pyrolysis of raw and torrefied Acacia nilotica towards removal of methylene blue dye from synthetic wastewater. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01645-0
Sonu, K., Sogani, M., Syed, Z., Dongre, A., & Sharma, G. (2020). Enhanced Decolorization and Treatment of Textile Dye Wastewater Through Adsorption on Acid Modified Corncob Derived Biochar. ChemistrySelect, 5(39), 12287–12297. https://doi.org/10.1002/slct.202003156
Späth, J., Arumugam, P., Lindberg, R. H., Abafe, O. A., Jansson, S., Fick, J., & Buckley, C. A. (2021). Biochar for the removal of detected micropollutants in South African domestic wastewater: A case study from a demonstration-scale decentralised wastewater treatment system in eThekwini. Water SA, 47(4 October). https://doi.org/10.17159/wsa/2021.v47.i4.3861
Steigerwald, J. M., & Ray, J. R. (2021). Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent. Journal of Hazardous Materials Letters, 2, 100025. https://doi.org/10.1016/j.hazl.2021.100025
Suleman, M., Zafar, M., Ahmed, A., Rashid, M. U., Hussain, S., Razzaq, A., Mohidem, N. A., Fazal, T., Haider, B., & Park, Y.-K. (2021). Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability, 13(12), 6926. https://doi.org/10.3390/su13126926
Tang, Y., Alam, M. S., Konhauser, K. O., Alessi, D. S., Xu, S., Tian, W., & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, 927–936. https://doi.org/10.1016/j.jclepro.2018.10.268
Tong, Y., Mayer, B. K., & McNamara, P. J. (2016). Triclosan adsorption using wastewater biosolids-derived biochar. Environmental Science: Water Research & Technology, 2(4), 761–768. https://doi.org/10.1039/C6EW00127K
UNICEF. (2019). Progress on household drinking water, sanitation and hygiene 2000-2017. . Special focus on inequalities.
Wang, G., Yang, R., Liu, Y., Wang, J., Tan, W., Liu, X., Jin, Y., & Qu, J. (2022). Adsorption of Cd(II) onto Auricularia auricula spent substrate biochar modified by CS2: Characteristics, mechanism and application in wastewater treatment. Journal of Cleaner Production, 367, 132882. https://doi.org/10.1016/j.jclepro.2022.132882
Wang, H., Wang, H., Zhao, H., & Yan, Q. (2020). Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chemical Engineering Journal, 379, 122372. https://doi.org/10.1016/j.cej.2019.122372
Wang, M., Wang, G., Qian, L., Yong, X., Wang, Y., An, W., Jia, H., & Zhou, J. (2021). Biochar production using biogas residue and their adsorption of ammonium nitrogen and chemical oxygen demand in wastewater. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01510-0
Wang, X., Li, X., Liu, G., He, Y., Chen, C., Liu, X., Li, G., Gu, Y., & Zhao, Y. (2019). Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: Adsorption properties and mechanisms. Environmental Science: Processes & Impacts, 21(3), 584–592. https://doi.org/10.1039/C8EM00457A
Xu, L., Wu, C., Chai, C., Cao, S., Bai, X., Ma, K., Jin, X., Shi, X., & Jin, P. (2022a). Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies. Journal of Hazardous Materials, 424, 127606. https://doi.org/10.1016/j.jhazmat.2021.127606
Xu, Y., Xia, H., Zhang, Q., Jiang, G., Cai, W., & Hu, W. (2022). Adsorption of cadmium(II) in wastewater by magnesium oxide modified biochar. Arabian Journal of Chemistry, 15(9), 104059. https://doi.org/10.1016/j.arabjc.2022.104059
Xu, Z., Lin, Y., Lin, Y., Yang, D., & Zheng, H. (2021). Adsorption behaviors of paper mill sludge biochar to remove Cu, Zn and As in wastewater. Environmental Technology & Innovation, 23, 101616. https://doi.org/10.1016/j.eti.2021.101616
Yang, G.-X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405. https://doi.org/10.1016/j.watres.2013.09.050
Yang, Z., Hu, W., Yao, B., Shen, L., Jiang, F., Zhou, Y., & Núñez-Delgado, A. (2021). A Novel Manganese-Rich Pokeweed Biochar for Highly Efficient Adsorption of Heavy Metals from Wastewater: Performance, Mechanisms, and Potential Risk Analysis. Processes, 9(7), 1209. https://doi.org/10.3390/pr9071209
Yao, H., Lu, J., Wu, J., Lu, Z., Wilson, P. C., & Shen, Y. (2013). Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source. Water, Air, & Soil Pollution, 224(1), 1370. https://doi.org/10.1007/s11270-012-1370-7
You, H., Lin, H., Li, Y., Yang, Y., Ma, Y., Shang, Z., & Niu, X. (2022). Iron-aluminum and aluminum-single impregnated biochar composite for nitrate adsorption in rare earth wastewater: Behavior and mechanism. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02148-8
Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W.-H., Ng, E. P., & Chang, J.-S. (2017). Recent developments on algal biochar production and characterization. Bioresource Technology, 246, 2–11. https://doi.org/10.1016/j.biortech.2017.08.009
Yuan, J., Zhu, Y., Wang, J., Liu, Z., He, M., Zhang, T., Li, P., & Qiu, F. (2021). Facile Modification of Biochar Derived from Agricultural Straw Waste with Effective Adsorption and Removal of Phosphorus from Domestic Sewage. Journal of Inorganic and Organometallic Polymers and Materials, 31(9), 3867–3879. https://doi.org/10.1007/s10904-021-01992-5
Zago, L. (2015). Discussões sobre a questão ambiental na China: Impactos e perspectivas. CLIMACOM. http://climacom.mudancasclimaticas.net.br/discussoes-sobre-a-questao-ambiental-na-china-impactos-e-perspectivas/
Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32. https://doi.org/10.1016/j.cej.2012.08.052
Zhang, M., He, M., Chen, Q., Huang, Y., Zhang, C., Yue, C., Yang, L., & Mu, J. (2022). Feasible synthesis of a novel and low-cost seawater-modified biochar and its potential application in phosphate removal/recovery from wastewater. Science of The Total Environment, 824, 153833. https://doi.org/10.1016/j.scitotenv.2022.153833
Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288
Zhou, Y., Xu, M., Huang, D., Xu, L., Yu, M., Zhu, Y., & Niu, J. (2021). Modulating hierarchically microporous biochar via molten alkali treatment for efficient adsorption removal of perfluorinated carboxylic acids from wastewater. Science of The Total Environment, 757, 143719. https://doi.org/10.1016/j.scitotenv.2020.143719
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Andriele Rodrigues de Oliveira; Taísa Andrade Barbosa; Luciana Coêlho Mendonça
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.