Nutritional strategies and recommendations of carbohydrates for sports performance

Authors

DOI:

https://doi.org/10.33448/rsd-v12i6.42253

Keywords:

Carbohydrates; Dietary supplements; Athletic performance; Glycogen.

Abstract

It is widely recognized that carbohydrates are the main source of energy in sports, and performance is related to the availability of these substrates in the body. This study aims to analyze the nutritional recommendations and strategies for carbohydrate intake to optimize sport performance. The present literature review examined experimental studies on the effect of carbohydrate intake in different sports on athletes' performance. The results show the importance of carbohydrate intake to optimize glycogen stores, reduce perceived exertion, and optimize performance. Strategic carbohydrate intake before, during or after exercise can increase glycogen availability, delay fatigue and improve endurance. The amount indicated depends on the duration of the exercise, with pre-exercise intake being beneficial in short-duration activities and supplementation during exercise in longer-duration disciplines. In summary, the research reinforces that the strategic use of carbohydrates plays a key role in optimizing sports performance. Strategic carbohydrate intake can confer significant benefits by providing a better use of energy reserves, delaying fatigue, and maximizing athletic performance capacity.

References

Adeva-Andany, M. M., González-Lucán, M., Donapetry-García, C., Fernández-Fernández, C., Ameneiros-Rodríguez, E., & Domínguez-Montero, A. (2016). Glycogen metabolism in humans. BBA Clinical, 5, 85–100.

Baker, J. S., McCormick, M. C., & Robergs, R. A. (2010). Interaction among skeletal muscle metabolic energy systems during intense exercise. Journal of Nutrition and Metabolism, 2010, 905612.

Beck, K., Thomson, J. S., Swift, R. J., & von Hurst, P. R. (2015). Role of nutrition in performance enhancement and postexercise recovery. Open Access Journal of Sports Medicine, 6, 259.

Burke, L. M., Hawley, J. A., & Wong, S. H. S. (2011). Carbohydrates for training and competition. Journal of Sports Sciences, 29(Sup1), S17—S27.

Cozzolino, S. M. F., & Cominetti, C. (2019). Bases Bioquímicas e Fisiológicas da Nutrição: Nas diferentes fases da vida, na saúde e na doença (2nd ed.). São Paulo: Manole.

Fuchs, C. J., Gonzalez, J. T., Beelen, M., Cermak, N. M., & Smith, F. E. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Journal of Applied Physiology, 120(11), 1328-1334.

Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725-741.

Gejl, K. D., Thams, L. B., Hansen, M., Rokkedal-Lausch, T., Plomgaard, P., Nybo, L., Larsen, F. J., Cardinale, D. A., Jensen, K., Holmberg, H. C., Vissing, K., Ørtenblad, N. (2017). No superior adaptations to carbohydrate periodization in elite endurance athletes. Medicine & Science in Sports & Exercise, 49(12), 2486-2497.

Gomes, D. A., Lopes, K. C. B. B., & Carvalho, L. M. F. d. (2022). Carboidratos na refeição pré-treino e sua relação com performance física e esportiva: Uma revisão integrativa. Research, Society and Development, 11(15), Artigo e295111537375.

Gonzalez, J. T., Fuchs, C. J., Betts, J. A., & van Loon, L. J. C. (2015). Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. American Journal of Physiology-Endocrinology and Metabolism, 309(12), E1032—E1039.

Gropper, S. S., Smith, J. L., & Carr, T. P. (2021). Advanced Nutrition and Human Metabolism (8th ed.). Cengage Learning.

Jagim, A. R., Heffernan, K. T., Zabriskie, H. A., Kerksick, C. M., Ward, E. D., & Arent, S. M. (2023). International society of sports nutrition position stand: Energy drinks and energy shots. Journal of the International Society of Sports Nutrition, 20(1).

Jeukendrup, A. (2014). A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Medicine, 44(Suppl 1), 25-33.

Jeukendrup, A., & Gleeson, M. (2021). Nutrição no esporte: Diretrizes nutricionais e bioquímica e fisiologia do exercício (3ª ed.). Manole.

King, J. A., McPherson, L. H., King, R. F. G. J., & Folland, J. P. (2018). Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiological Reports, 6(1), e13555.

King, J. A., Stensel, D. J., & Folland, J. P. (2019). Liver and muscle glycogen oxidation and performance with dose variation of glucose–fructose ingestion during prolonged (3 h) exercise. European Journal of Applied Physiology, 119(5), 1157-1169.

Knuijman, P., Hopkins, M., Mensink, M., & Cox, G. R. (2015). Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutrition & Metabolism, 12(1).

König, M., Bulik, S., Holz, A., Lancha Jr, A. H., Berg, A., & Müller, H. H. (2016). Substrate utilization and cycling performance following Palatinose™ ingestion: A randomized, double-blind, controlled trial. Nutrients, 8(7), 390.

Maunder, E., Podlogar, T., & Wallis, G. A. (2018). Postexercise fructose–maltodextrin ingestion enhances subsequent endurance capacity. Medicine & Science in Sports & Exercise, 50(5), 1039-1045.

Namma-Motonaga, K., Kondo, E., Osawa, T., Shiose, K., Kamei, A., Taguchi, M., & Takahashi, H. (2022). Effect of different carbohydrate intakes within 24 hours after 5-glycogen depletion on muscle glycogen recovery in Japanese endurance athletes. Nutrients, 14(7), 1320.

Namma-Motonaga, K., et al. (2022). Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients, 14(7), 1320.

Nelson, D. L., & Cox, M. M. (2018). Princípios de Bioquímica de Lehninger (7ª ed.). Artmed.

Oliver, J., et al. (2016). Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: A randomized controlled trial. PLOS ONE, 11(9), e0163009.

Podlogar, T., Einarson, S., Nuccio, R. P., et al. (2022). Addition of fructose to a carbohydrate-rich breakfast improves cycling endurance capacity in trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 32(5), 466-472.

Powers, S. K., & Howley, E. T. (2017). Exercise Physiology: Theory and Application to Fitness and Performance (10th ed.). Wolters Kluwer.

Rosa, G. (2021). Alimentos, Nutrição e Dietoterapia - Perguntas e Respostas. Manole.

Rowe, R., Sanchez-Lopez, C. R., Wylie, L. J., et al. (2021). Glucose and fructose hydrogel enhances running performance, exogenous carbohydrate oxidation, and gastrointestinal tolerance. Medicine & Science in Sports & Exercise, 54(4), 801-809.

Ross, A. C., Caballero, B., Cousins, R. J., Tucker, K. J., & Ziegler, T. R. (2016). Nutrição Moderna de Shils na Saúde e na Doença (11ª ed.). São Paulo: Manole.

Rosset, R., Lecoq, A.-M., Villette, S., & Francaux, M. (2017). Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. The American Journal of Clinical Nutrition, 105(3), 609-617.

Souza, M. T. d., Silva, M. D. d., & Carvalho, R. D. (2010). Integrative review: What is it? How to do it? Einstein (São Paulo), 8(1), 102–106.

Trommelen, J., Beelen, M., Pinckaers, P., Senden, J., Cermak, N., & van Loon, L. (2016). Fructose coingestion does not accelerate postexercise muscle glycogen repletion. Medicine & Science in Sports & Exercise, 48(5), 907-912.

Viribay, A., Lacambra, I., Hervás, D., Esquivel, J., & Chaverri, D. (2020). Effects of 120 g/h of carbohydrates intake during a mountain marathon on exercise-induced muscle damage in elite runners. Nutrients, 12(5), 1367.

Wilburn, D. T., Kerksick, C. M., Campbell, B. I., Taylor, L. W., Harvey, T. M., & Roberts, M. D. (2020). Acute maltodextrin supplementation during resistance exercise. Journal of Sports Science & Medicine, 19(2), 282.

Published

21/06/2023

How to Cite

ALMEIDA, L. R. .; CAMPBELL, G. R. .; CRUZ, M. F. de A. . Nutritional strategies and recommendations of carbohydrates for sports performance. Research, Society and Development, [S. l.], v. 12, n. 6, p. e21012642253, 2023. DOI: 10.33448/rsd-v12i6.42253. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42253. Acesso em: 3 may. 2024.

Issue

Section

Health Sciences