Type 1 Diabetes Mellitus and glyco-oxidation pathways related to hiperglycemi

Authors

DOI:

https://doi.org/10.33448/rsd-v12i8.42986

Keywords:

Type 1 Diabetes Mellitus; Oxidative stress; Genetic predisposition.

Abstract

Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease with a prevalent incidence in childhood (approximately 10 to 14 years old), but it can develop at any age. The knowledge regarding the pathophysiology of T1DM is extensive; however, articles addressing the adaptive immune response developed against autoantigens and the oxidative consequences of glucose excess in the body are still necessary. In this literature review, the primary objective was to discuss the pathways of both innate and adaptive immunity activated during the development of T1DM, and following the disease development, the alternative pathways of glyco-oxidation activated due to the excess glucose in the body. Platforms such as PubMed, Science Direct, and Google Scholar were utilized for this purpose. Through understanding these two processes, novel treatment methods might be designed. The mechanisms involved in the generation of reactive oxygen species (ROS) can serve as a valuable tool in the search for new therapeutic targets aimed at reducing the risk of developing secondary pathologies related to T1DM.

References

Armstrong, D., & Zidovetzki, R. (2008). Amplification of diacylglycerol activation of protein kinase C by cholesterol. Biophysical Journal, 94(12), 4700–4710.

Barrett, J. R. (2006). The science of soy: what do we really know? National Institute of Environmental Health Sciences.

Bezold, V., Rosenstock, P., Scheffler, J., Geyer, H., Horstkorte, R., & Bork, K. (2019). Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging (Albany NY), 11(14), 5258.

Bharath, L. P., Rockhold, J. D., & Conway, R. (2021). Selective autophagy in hyperglycemia-induced microvascular and macrovascular diseases. Cells, 10(8), 2114.

Boldison, J., & Wong, F. S. (2016). Immune and pancreatic β cell interactions in type 1 diabetes. Trends in Endocrinology & Metabolism, 27(12), 856–867.

Boldison, J., & Wong, F. S. (2021). Regulatory B cells: role in Type 1 diabetes. Frontiers in Immunology, 12, 746187.

Boyman, O., & Sprent, J. (2012). The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews Immunology, 12(3), 180–190.

Buse, M. G., Robinson, K. A., Marshall, B. A., Hresko, R. C., & Mueckler, M. M. (2002). Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E241–E250.

Castellanos, L., Tuffaha, M., Koren, D., & Levitsky, L. L. (2020). Management of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus. Pediatric Drugs, 22, 357–367.

Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bulletin of Experimental Biology and Medicine, 171(2), 179–189.

de la Rosa, M., Rutz, S., Dorninger, H., & Scheffold, A. (2004). Interleukin‐2 is essential for CD4+ CD25+ regulatory T cell function. European Journal of Immunology, 34(9), 2480–2488.

Della Manna, T., Setian, N., Savoldelli, R. D., Guedes, D. R., Kuperman, H., Menezes Filho, H. C., Steinmetz, L., Cominato, L., Dichtchekenian, V., & Damiani, D. (2016). Diabetes mellitus in childhood: an emerging condition in the 21 st century. Revista Da Associação Médica Brasileira, 62, 594–601.

Dudovskiy, J. (2016). The ultimate guide to writing a dissertation in business studies: A step-by-step assistance. Pittsburgh, USA, 51.

Ellwanger, K., & Hausser, A. (2013). Physiological functions of protein kinase D in vivo. IUBMB Life, 65(2), 98–107.

Ferreira, A. C. S., Gomes, K. B., Sampaio, I. B. M., Oliveira, V. C. de, Pardini, V. C., & Godard, A. L. B. (2009). Type 1 diabetes susceptibility determined by HLA alleles and CTLA-4 and insulin genes polymorphisms in Brazilians. Arquivos Brasileiros de Endocrinologia & Metabologia, 53, 368–373.

Gonzalez, C. D., Lee, M.-S., Marchetti, P., Pietropaolo, M., Towns, R., Vaccaro, M. I., Watada, H., & Wiley, J. W. (2011). The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 7(1), 2–11.

Gregory, G. A., Robinson, T. I. G., Linklater, S. E., Wang, F., Colagiuri, S., de Beaufort, C., Donaghue, K. C., Magliano, D. J., Maniam, J., & Orchard, T. J. (2022). Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. The Lancet Diabetes & Endocrinology, 10(10), 741–760.

Gugliucci, A. (2017). Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Advances in Nutrition, 8(1), 54–62.

Hannou, S. A., Haslam, D. E., McKeown, N. M., & Herman, M. A. (2018). Fructose metabolism and metabolic disease. The Journal of Clinical Investigation, 128(2), 545–555.

Hinman, R. M., Smith, M. J., & Cambier, J. C. (2014). B cells and type 1 diabetes… in mice and men. Immunology Letters, 160(2), 128–132.

Hue, L., & Taegtmeyer, H. (2009). The Randle cycle revisited: a new head for an old hat. American Journal of Physiology-Endocrinology and Metabolism, 297(3), E578–E591.

Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656–662.

Ikegami, H., Noso, S., Babaya, N., Hiromine, Y., & Kawabata, Y. (2008). Genetic basis of type 1 diabetes: similarities and differences between East and West. The Review of Diabetic Studies: RDS, 5(2), 64.

Inoguchi, T., Xia, P., Kunisaki, M., Higashi, S., Feener, E. P., & King, G. L. (1994). Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. American Journal of Physiology-Endocrinology and Metabolism, 267(3), E369–E379.

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642.

Kador, P. F., & Kinoshita, J. H. (1985). Role of aldose reductase in the development of diabetes-associated complications. The American Journal of Medicine, 79(5), 8–12.

Kalkan, I. H., & Suher, M. (2013). The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pakistan Journal of Medical Sciences, 29(4), 938.

Kaludercic, N., & Di Lisa, F. (2020). Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine, 7, 12.

Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 1–17.

Khalid Kheiralla, K. E. (2021). CTLA-4 (+ 49A/G) polymorphism in type 1 diabetes children of Sudanese population. Global Medical Genetics, 8(01), 11–18.

Khan, U., & Ghazanfar, H. (2018). T lymphocytes and autoimmunity. International Review of Cell and Molecular Biology, 341, 125–168.

Kim, G.-R., & Choi, J.-M. (2022). Current understanding of cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling in T-cell biology and disease therapy. Molecules and Cells, 45(8), 513.

Kim, H. S., Han, M. S., Chung, K. W., Kim, S., Kim, E., Kim, M. J., Jang, E., Lee, H. A., Youn, J., & Akira, S. (2007). Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes. Immunity, 27(2), 321–333.

Kolczynska, K., Loza-Valdes, A., Hawro, I., & Sumara, G. (2020). Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids in Health and Disease, 19, 1–15.

Kong, K. C., Butcher, A. J., McWilliams, P., Jones, D., Wess, J., Hamdan, F. F., Werry, T., Rosethorne, E. M., Charlton, S. J., & Munson, S. E. (2010). M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proceedings of the National Academy of Sciences, 107(49), 21181–21186.

Kotani, R., Nagata, M., Imagawa, A., Moriyama, H., Yasuda, H., Miyagawa, J., Hanafusa, T., & Yokono, K. (2004). T lymphocyte response against pancreatic beta cell antigens in fulminant type 1 diabetes. Diabetologia, 47, 1285–1291.

Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen recognition by the innate immune system. International Reviews of Immunology, 30(1), 16–34.

Lambert, A. P., Gillespie, K. M., Thomson, G., Cordell, H. J., Todd, J. A., Gale, E. A. M., & Bingley, P. J. (2004). Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. The Journal of Clinical Endocrinology & Metabolism, 89(8), 4037–4043.

Lazarev, V. F., Guzhova, I. V, & Margulis, B. A. (2020). Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics, 12(5), 416.

Lee, K. H., Ahn, B. S., Cha, D., Jang, W. W., Choi, E., Park, S., Park, J. H., Oh, J., Park, H., & Park, J. H. (2020). Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmunity Reviews, 19(3), 102469.

Levonen, A.-L., Hill, B. G., Kansanen, E., Zhang, J., & Darley-Usmar, V. M. (2014). Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology and Medicine, 71, 196–207.

Los, E., & Wilt, A. S. (2017). Diabetes mellitus type 1 in children.

Lu, S., Liao, Z., Lu, X., Katschinski, D. M., Mercola, M., Chen, J., Heller Brown, J., Molkentin, J. D., Bossuyt, J., & Bers, D. M. (2020). Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circulation Research, 126(10), e80–e96.

Lucier, J., & Weinstock, R. S. (2023). Type 1 Diabetes.

Maahs, D. M., West, N. A., Lawrence, J. M., & Mayer-Davis, E. J. (2010). Epidemiology of type 1 diabetes. Endocrinology and Metabolism Clinics, 39(3), 481–497.

Mariño, E., Silveira, P. A., Stolp, J., & Grey, S. T. (2011). B cell-directed therapies in type 1 diabetes. Trends in Immunology, 32(6), 287–294.

Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology, 14(2), 1–10.

Marshall, S., Bacote, V., & Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. Journal of Biological Chemistry, 266(8), 4706–4712.

Mayer, A. E., Löffler, M. C., Loza Valdés, A. E., Schmitz, W., El-Merahbi, R., Viera, J. T., Erk, M., Zhang, T., Braun, U., & Heikenwalder, M. (2019). The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Science Signaling, 12(593), eaav9150.

Mendez, Y., Surani, S., & Varon, J. (2017). Diabetic ketoacidosis: treatment in the intensive care unit or general medical/surgical ward? World Journal of Diabetes, 8(2), 40.

Mobasseri, M., Shirmohammadi, M., Amiri, T., Vahed, N., Fard, H. H., & Ghojazadeh, M. (2020). Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promotion Perspectives, 10(2), 98.

Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature Reviews Endocrinology, 5(3), 150–159.

Mortuza, R., Chen, S., Feng, B., Sen, S., & Chakrabarti, S. (2013). High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PloS One, 8(1), e54514.

Naylor, R. N., & Philipson, L. H. (2020). Diagnosis and clinical management of monogenic diabetes.

Nerup, J., Platz, P., Andersen, O. O., Christy, M., Lyngsøe, J., Poulsen, J. E., Ryder, L. P., Thomsen, M., Nielsen, L. S., & Svejgaard, A. (1974). HL-A antigens and diabetes mellitus. The Lancet, 304(7885), 864–866.

Noble, J. A., & Valdes, A. M. (2011). Genetics of the HLA region in the prediction of type 1 diabetes. Current Diabetes Reports, 11, 533–542.

Noble, J. A., Valdes, A. M., Cook, M., Klitz, W., Thomson, G., & Erlich, H. A. (1996). The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. American Journal of Human Genetics, 59(5), 1134.

Nyaga, D. M., Vickers, M. H., Jefferies, C., Perry, J. K., & O’Sullivan, J. M. (2018). Type 1 diabetes mellitus-associated genetic variants contribute to overlapping immune regulatory networks. Frontiers in Genetics, 9, 535.

Papachristoforou, E., Lambadiari, V., Maratou, E., & Makrilakis, K. (2020). Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. Journal of Diabetes Research, 2020.

Pastore, A., Federici, G., Bertini, E., & Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clinica Chimica Acta, 333(1), 19–39.

Pereira, S., Park, E., Mori, Y., Haber, C. A., Han, P., Uchida, T., Stavar, L., Oprescu, A. I., Koulajian, K., & Ivovic, A. (2014). FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. American Journal of Physiology-Endocrinology and Metabolism, 307(1), E34–E46.

Pessler, D., Rudich, A., & Bashan, N. (2001). Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia, 44, 2156–2164.

Petersen, M. C., & Shulman, G. I. (2017). Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends in Pharmacological Sciences, 38(7), 649–665.

Pociot, F., & McDermott, M. F. (2002). Genetics of type 1 diabetes mellitus. Genes & Immunity, 3(5), 235–249.

Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet, 281(7285), 785–789.

Ranjouri, M. R., Aob, P., Derakhshan, S. M., Khaniani, M. S., Chiti, H., & Ramazani, A. (2016). Association study of IL2RA and CTLA4 gene variants with Type I diabetes mellitus in children in the northwest of Iran. BioImpacts: BI, 6(4), 187.

Rendle, K. A., Abramson, C. M., Garrett, S. B., Halley, M. C., & Dohan, D. (2019). Beyond exploratory: A tailored framework for designing and assessing qualitative health research. BMJ Open, 9(8). https://doi.org/10.1136/bmjopen-2019-030123

Robertson, R. P. (2006). Oxidative stress and impaired insulin secretion in type 2 diabetes. Current Opinion in Pharmacology, 6(6), 615–619.

Sociedade Brasileira de Diabetes (SBD). (2023, 12 de junho). Incidência de diabetes mellitus no Brasil. https://diabetes.org.br

Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes dyslipidemia. Diabetes Therapy, 7, 203–219.

Shabalala, S. C., Johnson, R., Basson, A. K., Ziqubu, K., Hlengwa, N., Mthembu, S. X. H., Mabhida, S. E., Mazibuko-Mbeje, S. E., Hanser, S., & Cirilli, I. (2022). Detrimental effects of lipid peroxidation in type 2 diabetes: Exploring the neutralizing influence of antioxidants. Antioxidants, 11(10), 2071.

Shapiro, M. R., Yeh, W.-I., Longfield, J. R., Gallagher, J., Infante, C. M., Wellford, S., Posgai, A. L., Atkinson, M. A., Campbell-Thompson, M., & Lieberman, S. M. (2020). CD226 deletion reduces type 1 diabetes in the NOD mouse by impairing thymocyte development and peripheral T cell activation. Frontiers in Immunology, 11, 2180.

Shi, H., Munk, A., Nielsen, T. S., Daughtry, M. R., Larsson, L., Li, S., Høyer, K. F., Geisler, H. W., Sulek, K., & Kjøbsted, R. (2018). Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism, 11, 160–177.

Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. The Journal of Clinical Investigation, 106(2), 171–176.

Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21(7), 363–383.

Sivitz, W. I., & Yorek, M. A. (2010). Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & Redox Signaling, 12(4), 537–577.

Slawson, C., Copeland, R. J., & Hart, G. W. (2010). O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends in Biochemical Sciences, 35(10), 547–555.

Sticht, J., Álvaro-Benito, M., & Konigorski, S. (2021). Type 1 Diabetes and the HLA Region: Genetic Association Besides Classical HLA Class II Genes. Frontiers in Genetics, 12, 683946.

Syed, F. Z. (2022). Type 1 diabetes mellitus. Annals of Internal Medicine, 175(3), ITC33–ITC48.

Thomas, H. E., Trapani, J. A., & Kay, T. W. H. (2010). The role of perforin and granzymes in diabetes. Cell Death & Differentiation, 17(4), 577–585.

Torinsson Naluai, Å., Nilsson, S., Samuelsson, L., Gudjonsdottir, A. H., Ascher, H., Ek, J., Hallberg, B., Kristiansson, B., Martinsson, T., & Nerman, O. (2000). The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens, 56(4), 350–355.

Van Belle, T. L., Coppieters, K. T., & Von Herrath, M. G. (2011). Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews, 91(1), 79–118.

Visperas, A., & Vignali, D. A. A. (2016). Are regulatory T cells defective in type 1 diabetes and can we fix them? The Journal of Immunology, 197(10), 3762–3770.

Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2), 119.

Wada, J., & Nakatsuka, A. (2016). Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Medica Okayama, 70(3), 151–158.

Wan, X.-X., Zhang, D.-Y., Khan, M. A., Zheng, S.-Y., Hu, X.-M., Zhang, Q., Yang, R.-H., & Xiong, K. (2022). Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to beta-cell replacement. Frontiers in Endocrinology, 13, 859638.

Wang, T., Wang, J., Hu, X., Huang, X.-J., & Chen, G.-X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76.

Yan, L. (2018). Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Models and Experimental Medicine, 1(1), 7–13.

Yoon, J.-W., & Jun, H.-S. (2005). Autoimmune destruction of pancreatic β cells. American Journal of Therapeutics, 12(6), 580–591.

Zheng, Y., Luo, A., & Liu, X. (2021). The imbalance of mitochondrial fusion/fission drives high-glucose-induced vascular injury. Biomolecules, 11(12), 1779.

Published

28/08/2023

How to Cite

RENZI, D. F. .; DAL FORNO, G. O. . Type 1 Diabetes Mellitus and glyco-oxidation pathways related to hiperglycemi. Research, Society and Development, [S. l.], v. 12, n. 8, p. e14812842986, 2023. DOI: 10.33448/rsd-v12i8.42986. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42986. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences