Recent advances in the development of the physically crosslinked hydrogels and their biomedical applications

Authors

DOI:

https://doi.org/10.33448/rsd-v12i8.43073

Keywords:

Hydrogels; Physical crosslinking; Assembly dynamics; Biomedical applications.

Abstract

Hydrogels are three-dimensional networks formulated from natural or synthetic polymers with a high capacity to absorb and transport water in their structure. Hydrogels are prepared from the crosslinking of their polymeric chains, which involves two basic mechanisms: chemical crosslinking and physical crosslinking. In chemical crosslinking, hydrogels are held together by covalent bonds; while physically cross-linked hydrogels are produced by non-covalent interactions, such as hydrogen bonds, electrostatic interactions, and hydrophobic forces, among others. Physically cross-linked hydrogels are more similar to biological systems due to their assembly dynamics, so they have wide biomedical applications. The most used approaches in the preparation of hydrogels by physical crosslinking include freeze-thaw, formation of stereocomplexes, ionic interaction, hydrogen bonding, crystallization, and crosslinking by hydrophobic interactions. These approaches are briefly discussed in this review. Some biomedical applications of these hydrogels will also be discussed.

References

Ahsan, A., Tian, W-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70 (8), 574-584. https://doi.org/10.1080/00914037.2020.1740989.

Akhtar, M. F., Hanif, M., & Ranjh, N. M. (2015). Methods of synthesis of hydrogels. A review. Saudi Pharmaceutical Journal, 24 (5), 554-559. http://dx.doi.org/10.1016/j.jsps.2015.03.022.

Bernhard, S., & Tibbitt, M. W. (2021). Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 171, 240-256. https://doi.org/10.1016/j.addr.2021.02.002.

Cho, S., Kang, J. W., & Lee, J. (2020). In-situ crystallization of sildenafil during ionic crosslinking of alginate granules. Korean Journal of Chemical Engineering, 37 (10), 1726-1731. 10.1007/s11814-020-0580-8.

Cui, Z., Wright, L. D., Guzzo, R., Freeman, J. W., Drissi, H. D., & Nair, L. S. (2013). Poly(D-lactide)/ poly(caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. Journal of Bioactive and Compatible Polymers, 28 (2), 115-125. https://doi.org/10.1177/0883911512472278.

De Jong, S. J., van Eerdenbrugh, B., van Nostrum, C. F., Kettenes-van den Bosch, J. J., & Hennink, W. E. (2001). Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. Journal of Controlled Release, 71 (3), 261-275. https://doi.org/10.1016/S0168-3659(01)00228-0.

Distler, T., McDonald, K., Heid, S., Karakaya, E., Detsch, R., & Boccaccini, A. R. (2020). Ionically and enzymatically dual-crosslinked oxidized alginate gelatine hydrogels with tuneable stiffness and degradation behaviour for tissue engineering. ACS Biomaterials Science & Engineering, 6 (7), 3899-3914. https://doi.org/10.1021/acsbiomaterials.0c00677.

Figueroa-Pizano, M. D., Vélaz, I., & Martínez-Barbosa, M. (2020). A freeze-thawing method to prepare chitosan-poly(vinyl alcohol) hydrogels without crosslinking agents and diflunisal release studies. Journal of Visualized Experiments, 14 (155), 1-9. 10.3791/59636

Francesko, A., Petkova, P., & Tzanov, T. (2018). Hydrogel dressings for advanced wound management. Current Medicinal Chemistry, 25 (41), 5782-5797. 10.2174/0929867324666170920161246.

Geng, Z., Ji, Y., Yu, S., Liu, Q., Zhou, Z., Guo, C., Lu, D., & Pei, D. (2021). Preparation and characterization of a dual cross-linking injectable hydrogel based on sodium alginate and chitosan quaternary ammonium salt. Carbohydrate Research, 507, 108389. https://doi.org/10.1016/j.carres.2021.10838.

Gibas, I., & Janik, H. (2010). Review: synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4 (4), 297-304. 10.23939/chcht04.04.297.

González-Henríquez, C. M., Sarabia-Vallejos, M. A., & Rodriguez-Hernandez, J. (2017). Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials, 10, 232, 1-23. 10.3390/ma10030232.

Hassan, C. M., Stewart, J. E., & Peppas, N. A. (2000). Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. European Journal of Pharmaceutics and Biopharmaceutics, 49 (02), 161-165. 10.1016/s0939-6411(99)00056-9.

Hong, K. H. (2017). Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polymer Bulletin, 74:2861-2872. 10.1007/s00289-016-1868-z.

Hu, L., Wang, Y., Liu, Q., Liu, M., Yang, F., Wang, C. Pan, P., Wang, L., Chen, L., & Chen, J. (2023). Real-time monitoring flexible hydrogels based on dual physically cross-linked network for promoting wound healing. Chinese Chemical Letters, 2, 108262. https://doi.org/10.1016/j.cclet.2023.108262.

Im, S. H., Im, D. H., Park, S. J., Chung, J. J., Jung, Y., & Kim, S. H. (2021). Stereocomplex polylactide for drug delivery and biomedical applications: A review. Molecules, 26 (2846), 1-27. https://doi.org/10.3390/molecules26102846.

Jiang, P., Lin, P., Yang, C., Qin, H., Wang, X., & Zhou, F. (2020). 3D Printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chemistry of Materials, 32 (23), 9983-9995. https://dx.doi.org/10.1021/acs.chemmater.0c02941.

Jung, Y.S., Park, W., Park, H., Lee, D-K., & Na, K. (2017). Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydrate Polymers, 156 (20), 403-408. http://dx.doi.org/10.1016/j.carbpol.2016.08.068.

Lin, N., Bruzzese, C., & Dufresne, A. (2021). TEMPO-Oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Applied Materials & Interfaces, 4, 4948-4959. dx.doi.org/10.1021/am301325r.

Lin, F., Wang, Z., Chen, J., Lu, B., Tang, L., Chen, X., Lin, C., Huang, B., Zeng, H., & Chen, Y. (2020). A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels. Journal of Materials Chemistry B, 8, 4002-4015. 10.1039/d0tb00424c.

Liu, C., Bae, K. H., Yamashita, A., Chung, J. E., & Kurisawa, M. (2017). Thiol-mediated synthesis of hyaluronic acid-epigallocatechin-3-O-gallate conjugates for the formation of injectable hydrogels with free radical scavenging property and degradation resistance. Biomacromolecules, 18 (10), 3143-3155. https://doi.org/10.1021/acs.biomac.7b00788.

Liu, H., Hu, X., Li, W., Zhu, M., Tian, J., Li, L., Luo, B., Zhou, C., & Lu, L. (2023). A highly-stretchable and adhesive hydrogel for noninvasive joint wound closure driven by hydrogen bonds. Chemical Engineering Journal, 452,139368. https://doi.org/10.1016/j.cej.2022.139368.

Lu, L., Yuan, S., Wang, J., Shen, Y., Deng, S., Xie, L., & Yang, Q. (2018). The Formation Mechanism of Hydrogels. Current Stem Cell Research & Therapy, 13 (7), 490-496. 10.2174/1574888X12666170612102706.

Luo, F., Fortenberry, A., Ren, J., & Qiang, Z. (2020). Recent Progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement. Frontiers in Chemistry, 8 (688), 1-9. 10.3389/fchem.2020.00688.

Mondal, S., Das, S., & Nandi, A. K. (2020). A review on recent advances in polymer and peptide hydrogels. Soft Matter, 6 (16), 1404-1454. https://doi.org/10.1039/C9SM02127B.

Madduma-Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138 (e50376), 1-23. https://doi.org/10.1002/app.50376.

Ng, V. W. L., Chan, J. M. W., Sardon, H., Ono, R. J., García, J. M., Yang, Y. Y., & Hedrick, J. L. (2014). Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Advanced Drug Delivery Reviews, 78, 46-62. http://dx.doi.org/10.1016/j.addr.2014.10.028.

Ou, K., Dong, X., Qin, C., & He, X. J. J. (2017). Properties and toughening mechanisms of PVA/PAM doublenetwork hydrogels prepared by freeze-thawing and annealswelling. Materials Science & Engineering C - Materials for Biological Applications, 77 (1), 1017-1026, 2017. 10.1016/j.msec.2017.03.287.

Podgórna, K., Jankowska, K., & Szczepanowicz, K. (2017). Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519 (20), 192-198. https://doi.org/10.1016/j.colsurfa.2016.07.067.

Shantha, K. L., & Harding, D. R. K. (2002). Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. Journal of Applied Polymer Science, 84 (14), 2597-2604. https://doi.org/10.1002/app.10378.

Sharma, S., & Tiwari, S. (2020). A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162 (1), 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110.

Singhal, A., Sinha, N., Kumari, P., & Purkayastha, M. (2020). Synthesis and applications of hydrogels in cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 20 (12), 1431-1446. 10.2174/1871521409666200120094048.

Sood, N., Bhardwaj, A., Mehta, S., & Mehta, A. (2016). Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Delivery, 23 (3), 758-780. https://doi.org/10.3109/10717544.2014.940091.

Rodríguez-Rodríguez, R., Espinosa-Andrews, H., Velasquillo-Martínez, C., & García-Carvajal, Z. Y. (2020). Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 69 (1), 1-20. https://doi.org/10.1080/00914037.2019.1581780.

Tang, G., Tan, Z., Zeng, W., Wang, X., Shi, C., Liu, Y., He, H., Chen, R., & Ye, X. (2020). Recent advances of chitosan-based injectable hydrogels for bone and dental tissue regeneration. Frontiers in Bioengineering and Biotechnology, 8 (1084), 1-15. 10.3389/fbioe.2020.587658.

Wang, H., Wang, E., & Huang, Y., Li, X. (2020). Hybrid hydrogel based on stereocomplex PDLA/PLLA and gelatin for bone regeneration. Journal of Applied Polymer Science, e49571: 1-9. https://doi.org/10.1002/app.49571.

Willcox, P. J., Howie Jr., D. W., Schmidt-Rohr, K., Hoagland, D. A., Gido, S.P., Pudjijanto, S., Kleiner, L.W., & Venkatraman, S. (1999). Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. Journal of Polymer Science: Part B: Polymer Physics, 37 (24), 3438-3454. https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3438::AID-POLB6>3.0.CO;2-9.

Zhang, L., Wang, L., Guo, B., & Ma, P. X. (2014). Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydrate Polymers, 103, 110-118. http://dx.doi.org/10.1016/j.carbpol.2013.12.017.

Zhang, R., Fu, Q., Zhou, K., Yao, Y., & Zhu, X. (2020). Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer, 119 (122603), 1-9. https://doi.org/10.1016/j.polymer.2020.122603.

Zhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W., & Dai, H. (2018). Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydrate Polymers, 197 (1), 292-304. https://doi.org/10.1016/j.carbpol.2018.05.078.

Downloads

Published

01/09/2023

How to Cite

SIQUEIRA, E. C. de .; FRANÇA , J. A. A. de .; SOUZA, R. F. M. de .; LEOTERIO, D. M. da S. .; CORDEIRO, J. N. .; DOBOSZEWSKI, B. . Recent advances in the development of the physically crosslinked hydrogels and their biomedical applications . Research, Society and Development, [S. l.], v. 12, n. 8, p. e18212843073, 2023. DOI: 10.33448/rsd-v12i8.43073. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43073. Acesso em: 6 jan. 2025.

Issue

Section

Review Article