Avances recientes en el desarrollo de hidrogeles físicamente reticulados y sus aplicaciones biomédicas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i8.43073

Palabras clave:

Hidrogeles; Entrecruzamiento físico; Dinámica de ensamblaje; Aplicaciones biomédicas.

Resumen

Los hidrogeles son redes tridimensionales formuladas a partir de polímeros naturales o sintéticos con una alta capacidad de absorción y transporte de agua en su estructura. Los hidrogeles se preparan a partir del entrecruzamiento de sus cadenas poliméricas, lo que implica dos mecanismos básicos: el entrecruzamiento químico y el entrecruzamiento físico. En la reticulación química, los hidrogeles se mantienen unidos por enlaces covalentes; mientras que los hidrogeles físicamente reticulados se producen por interacciones no covalentes, como enlaces de hidrógeno, interacciones electrostáticas, fuerzas hidrofóbicas, entre otras. Los hidrogeles físicamente reticulados son más similares a los sistemas biológicos debido a su dinámica de ensamblaje, por lo que tienen una amplia aplicación biomédica. Los enfoques más utilizados en la preparación de hidrogeles por entrecruzamiento físico incluyen congelación-descongelación, formación de estereocomplejos, interacción iónica, enlaces de hidrógeno, cristalización, entrecruzamiento por interacciones hidrofóbicas. Estos enfoques se discuten brevemente en esta revisión. También se discutirán algunas aplicaciones biomédicas de estos hidrogeles.

Citas

Ahsan, A., Tian, W-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70 (8), 574-584. https://doi.org/10.1080/00914037.2020.1740989.

Akhtar, M. F., Hanif, M., & Ranjh, N. M. (2015). Methods of synthesis of hydrogels. A review. Saudi Pharmaceutical Journal, 24 (5), 554-559. http://dx.doi.org/10.1016/j.jsps.2015.03.022.

Bernhard, S., & Tibbitt, M. W. (2021). Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 171, 240-256. https://doi.org/10.1016/j.addr.2021.02.002.

Cho, S., Kang, J. W., & Lee, J. (2020). In-situ crystallization of sildenafil during ionic crosslinking of alginate granules. Korean Journal of Chemical Engineering, 37 (10), 1726-1731. 10.1007/s11814-020-0580-8.

Cui, Z., Wright, L. D., Guzzo, R., Freeman, J. W., Drissi, H. D., & Nair, L. S. (2013). Poly(D-lactide)/ poly(caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. Journal of Bioactive and Compatible Polymers, 28 (2), 115-125. https://doi.org/10.1177/0883911512472278.

De Jong, S. J., van Eerdenbrugh, B., van Nostrum, C. F., Kettenes-van den Bosch, J. J., & Hennink, W. E. (2001). Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. Journal of Controlled Release, 71 (3), 261-275. https://doi.org/10.1016/S0168-3659(01)00228-0.

Distler, T., McDonald, K., Heid, S., Karakaya, E., Detsch, R., & Boccaccini, A. R. (2020). Ionically and enzymatically dual-crosslinked oxidized alginate gelatine hydrogels with tuneable stiffness and degradation behaviour for tissue engineering. ACS Biomaterials Science & Engineering, 6 (7), 3899-3914. https://doi.org/10.1021/acsbiomaterials.0c00677.

Figueroa-Pizano, M. D., Vélaz, I., & Martínez-Barbosa, M. (2020). A freeze-thawing method to prepare chitosan-poly(vinyl alcohol) hydrogels without crosslinking agents and diflunisal release studies. Journal of Visualized Experiments, 14 (155), 1-9. 10.3791/59636

Francesko, A., Petkova, P., & Tzanov, T. (2018). Hydrogel dressings for advanced wound management. Current Medicinal Chemistry, 25 (41), 5782-5797. 10.2174/0929867324666170920161246.

Geng, Z., Ji, Y., Yu, S., Liu, Q., Zhou, Z., Guo, C., Lu, D., & Pei, D. (2021). Preparation and characterization of a dual cross-linking injectable hydrogel based on sodium alginate and chitosan quaternary ammonium salt. Carbohydrate Research, 507, 108389. https://doi.org/10.1016/j.carres.2021.10838.

Gibas, I., & Janik, H. (2010). Review: synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4 (4), 297-304. 10.23939/chcht04.04.297.

González-Henríquez, C. M., Sarabia-Vallejos, M. A., & Rodriguez-Hernandez, J. (2017). Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials, 10, 232, 1-23. 10.3390/ma10030232.

Hassan, C. M., Stewart, J. E., & Peppas, N. A. (2000). Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. European Journal of Pharmaceutics and Biopharmaceutics, 49 (02), 161-165. 10.1016/s0939-6411(99)00056-9.

Hong, K. H. (2017). Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polymer Bulletin, 74:2861-2872. 10.1007/s00289-016-1868-z.

Hu, L., Wang, Y., Liu, Q., Liu, M., Yang, F., Wang, C. Pan, P., Wang, L., Chen, L., & Chen, J. (2023). Real-time monitoring flexible hydrogels based on dual physically cross-linked network for promoting wound healing. Chinese Chemical Letters, 2, 108262. https://doi.org/10.1016/j.cclet.2023.108262.

Im, S. H., Im, D. H., Park, S. J., Chung, J. J., Jung, Y., & Kim, S. H. (2021). Stereocomplex polylactide for drug delivery and biomedical applications: A review. Molecules, 26 (2846), 1-27. https://doi.org/10.3390/molecules26102846.

Jiang, P., Lin, P., Yang, C., Qin, H., Wang, X., & Zhou, F. (2020). 3D Printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chemistry of Materials, 32 (23), 9983-9995. https://dx.doi.org/10.1021/acs.chemmater.0c02941.

Jung, Y.S., Park, W., Park, H., Lee, D-K., & Na, K. (2017). Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydrate Polymers, 156 (20), 403-408. http://dx.doi.org/10.1016/j.carbpol.2016.08.068.

Lin, N., Bruzzese, C., & Dufresne, A. (2021). TEMPO-Oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Applied Materials & Interfaces, 4, 4948-4959. dx.doi.org/10.1021/am301325r.

Lin, F., Wang, Z., Chen, J., Lu, B., Tang, L., Chen, X., Lin, C., Huang, B., Zeng, H., & Chen, Y. (2020). A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels. Journal of Materials Chemistry B, 8, 4002-4015. 10.1039/d0tb00424c.

Liu, C., Bae, K. H., Yamashita, A., Chung, J. E., & Kurisawa, M. (2017). Thiol-mediated synthesis of hyaluronic acid-epigallocatechin-3-O-gallate conjugates for the formation of injectable hydrogels with free radical scavenging property and degradation resistance. Biomacromolecules, 18 (10), 3143-3155. https://doi.org/10.1021/acs.biomac.7b00788.

Liu, H., Hu, X., Li, W., Zhu, M., Tian, J., Li, L., Luo, B., Zhou, C., & Lu, L. (2023). A highly-stretchable and adhesive hydrogel for noninvasive joint wound closure driven by hydrogen bonds. Chemical Engineering Journal, 452,139368. https://doi.org/10.1016/j.cej.2022.139368.

Lu, L., Yuan, S., Wang, J., Shen, Y., Deng, S., Xie, L., & Yang, Q. (2018). The Formation Mechanism of Hydrogels. Current Stem Cell Research & Therapy, 13 (7), 490-496. 10.2174/1574888X12666170612102706.

Luo, F., Fortenberry, A., Ren, J., & Qiang, Z. (2020). Recent Progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement. Frontiers in Chemistry, 8 (688), 1-9. 10.3389/fchem.2020.00688.

Mondal, S., Das, S., & Nandi, A. K. (2020). A review on recent advances in polymer and peptide hydrogels. Soft Matter, 6 (16), 1404-1454. https://doi.org/10.1039/C9SM02127B.

Madduma-Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138 (e50376), 1-23. https://doi.org/10.1002/app.50376.

Ng, V. W. L., Chan, J. M. W., Sardon, H., Ono, R. J., García, J. M., Yang, Y. Y., & Hedrick, J. L. (2014). Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Advanced Drug Delivery Reviews, 78, 46-62. http://dx.doi.org/10.1016/j.addr.2014.10.028.

Ou, K., Dong, X., Qin, C., & He, X. J. J. (2017). Properties and toughening mechanisms of PVA/PAM doublenetwork hydrogels prepared by freeze-thawing and annealswelling. Materials Science & Engineering C - Materials for Biological Applications, 77 (1), 1017-1026, 2017. 10.1016/j.msec.2017.03.287.

Podgórna, K., Jankowska, K., & Szczepanowicz, K. (2017). Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519 (20), 192-198. https://doi.org/10.1016/j.colsurfa.2016.07.067.

Shantha, K. L., & Harding, D. R. K. (2002). Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. Journal of Applied Polymer Science, 84 (14), 2597-2604. https://doi.org/10.1002/app.10378.

Sharma, S., & Tiwari, S. (2020). A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162 (1), 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110.

Singhal, A., Sinha, N., Kumari, P., & Purkayastha, M. (2020). Synthesis and applications of hydrogels in cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 20 (12), 1431-1446. 10.2174/1871521409666200120094048.

Sood, N., Bhardwaj, A., Mehta, S., & Mehta, A. (2016). Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Delivery, 23 (3), 758-780. https://doi.org/10.3109/10717544.2014.940091.

Rodríguez-Rodríguez, R., Espinosa-Andrews, H., Velasquillo-Martínez, C., & García-Carvajal, Z. Y. (2020). Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 69 (1), 1-20. https://doi.org/10.1080/00914037.2019.1581780.

Tang, G., Tan, Z., Zeng, W., Wang, X., Shi, C., Liu, Y., He, H., Chen, R., & Ye, X. (2020). Recent advances of chitosan-based injectable hydrogels for bone and dental tissue regeneration. Frontiers in Bioengineering and Biotechnology, 8 (1084), 1-15. 10.3389/fbioe.2020.587658.

Wang, H., Wang, E., & Huang, Y., Li, X. (2020). Hybrid hydrogel based on stereocomplex PDLA/PLLA and gelatin for bone regeneration. Journal of Applied Polymer Science, e49571: 1-9. https://doi.org/10.1002/app.49571.

Willcox, P. J., Howie Jr., D. W., Schmidt-Rohr, K., Hoagland, D. A., Gido, S.P., Pudjijanto, S., Kleiner, L.W., & Venkatraman, S. (1999). Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. Journal of Polymer Science: Part B: Polymer Physics, 37 (24), 3438-3454. https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3438::AID-POLB6>3.0.CO;2-9.

Zhang, L., Wang, L., Guo, B., & Ma, P. X. (2014). Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydrate Polymers, 103, 110-118. http://dx.doi.org/10.1016/j.carbpol.2013.12.017.

Zhang, R., Fu, Q., Zhou, K., Yao, Y., & Zhu, X. (2020). Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer, 119 (122603), 1-9. https://doi.org/10.1016/j.polymer.2020.122603.

Zhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W., & Dai, H. (2018). Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydrate Polymers, 197 (1), 292-304. https://doi.org/10.1016/j.carbpol.2018.05.078.

Descargas

Publicado

01/09/2023

Cómo citar

SIQUEIRA, E. C. de .; FRANÇA , J. A. A. de .; SOUZA, R. F. M. de .; LEOTERIO, D. M. da S. .; CORDEIRO, J. N. .; DOBOSZEWSKI, B. . Avances recientes en el desarrollo de hidrogeles físicamente reticulados y sus aplicaciones biomédicas. Research, Society and Development, [S. l.], v. 12, n. 8, p. e18212843073, 2023. DOI: 10.33448/rsd-v12i8.43073. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43073. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones