Genetic and molecular interactions in Crohn's Disease: A systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v13i3.45011

Keywords:

Cytokines; Crohn's disease; Genetics; Inflammation; PI3K/AKT/PTEN.

Abstract

Inflammatory bowel disease (IBD), including Crohn's disease, has a significant genetic basis, highlighted by mutations in protein 2 (NOD2). Thus, these mutations lead to an exaggerated inflammatory response against the intestinal microbiota, involving reactive oxygen species (ROS) and the activation of the PI3K/AKT/PTEN pathway, resulting in the activation of nuclear factor-κB (NF-κB) and production of cytokines, such as TNFα. Thus, this molecular cascade plays a central role in the pathogenesis of Crohn's disease, making it the target of research for therapeutic development. Furthermore, understanding these molecular interactions may reveal new opportunities for treating the disease. In this sense, this initiative has been the focus of numerous scientific research activities and drug development, in order to establish new targets for therapeutic development against Cronh's disease.

References

Almeida, T. L. D. C. (2016). Expressão dos genes EGFR, PTEN, MGMT e IDH1/2 e dos microRNAs miR-181b, miR-145, miR-149 e miR128a em neuroesferas em linhagens de glioblastoma submetidos ao tratamento com radiação ionizante e temozolomida (Doctoral dissertation, Universidade de São Paulo).

Bartolomé, A., Guillén, C., & Benito, M. (2010). Papel do complexo TSC1‐TSC2 na integração da sinalização de insulina e glicose envolvida na proliferação de células beta pancreáticas. Endocrinologia, 151(7), 3084-3094.

Belfort, M. R. D. C. (2017). Análise da alteração do número de cópias de genes envolvidos na via de sinalização celular EGFR/PI3K/AKT/PTEN em câncer peniano.

Blandizzi, C., Gionchetti, P., Armuzzi, A., Caporali, R., Chimenti, S., Cimaz, R., & Girolomoni, G. (2014). O papel do fator de necrose tumoral na patogênese de doenças mediadas pelo sistema imunológico. International Journal of Immunopathology and Pharmacology, 27(1), S1-S10.

Brolih, S., Parks, S. K., Vial, V., Durivault, J., Mostosi, L., Pouysségur, J., & Picco, V. (2018). AKT1 restringe a capacidade invasiva das células do carcinoma de cabeça e pescoço que abrigam uma atividade constitutivamente ativa da PI3 quinase. Câncer Bmc, 18, 1-10.

Cénit, M. C., Matzaraki, V., Tigchelaar, E. F., & Zhernakova, A. (2014). Conhecimento em rápida expansão sobre o papel do microbioma intestinal na saúde e doença. Biochim Biophys Acta, S0925‐4439(14), 00151-00153.

de Boer, N. K., Löwenberg, M., & Hoentjen, F. (2014). Manejo da doença de Crohn em maus respondedores ao adalimumabe. Clinical and Experimental Gastroenterology, 7, 83-92.

Ghirelli, E. A., Silva, F. P. G., Oricil, A. G. G., Paula, C. B. V., Nagashima, S., Oldenburg Neto, C. F., Storti, E., Sakiyama, F. Y. R., Kayano, R. M., Sakiyama, R. R., Moreira, V. da S., Sotomaior, V. S., & Noronha, L. de. (2023). Role of the NF-kB/parkin/vegfr-1 pathway associated with hypoxic-ischemic insult in germinal matrix samples of newborn infants. Revista Paulista de Pediatria, 41, e2022034. https://doi.org/10.1590/1984-0462/2023/41/2022034

Hodgkinson, C. P., Sale, E. M., & Sale, G. J. (2002). Caracterização da atividade de PDK2 contra a proteína quinase B gama. Bioquímica, 41(33), 10351-10359.

Irié, T., Maeda, Y., Aida, T., Sumitani, K., Nagumo, M., & Tachikawa, T. (2004). Inflamação granulomatosa múltipla nas glândulas salivares menores: uma nova entidade proposta, sialadenite granulomatosa alérgica. Pathology International, 54(11), 850-853.

Kirkegaard, T., Witton, C. J., Edwards, J., et al. (2010). Alterações moleculares em AKT1, AKT2 e AKT3 detectadas no câncer de mama e próstata por FISH. Histopatologia, 56(2), 203-211.

Liao, Y., Xu, J., Qin, B., Shi, J., Qin, C., Xie, F., ... & Bai, L. (2021). Advanced oxidation protein products impair autophagic flux in macrophage by inducing lysosomal dysfunction via activation of PI3K-Akt-mTOR pathway in Crohn's disease. Free Radical Biology and Medicine, 172, 33-47.

Long, S. H., He, Y., Chen, M. H., Cao, K., Chen, Y. J., Chen, B. L., ... & Hu, P. J. (2013). Activation of PI3K/Akt/mTOR signaling pathway triggered by PTEN downregulation in the pathogenesis of C rohn's disease. Journal of Digestive Diseases, 14(12), 662-669.

Matsuo, F. S. (2015). Estudo da via de sinalização PI3K-Akt E GSK3β em carcinomas epidermoides metastáticos e não metastáticos de cavidade bucal.

Moraes, C. D. F. D., & Díaz, J. A. M. (2020). Avaliação da interação da via WNT/Β-Catenina e da sinalização de IGF1 na progressão do câncer colorretal.

Moral, M., & Paramio, JM (2008). Via Akt como alvo de intervenção terapêutica no CECP. Histologia e histopatologia.

Park, S., Regmi, S. C., Park, S. Y., Lee, E. K., Chang, J. H., Ku, S. K., & Kim, J. A. (2014). Efeito protetor de 7‐O‐succinil macrolactina A contra a inflamação intestinal mediada pelas vias de sinalização PI3‐kinase/Akt/mTOR e NF‐κB. European Journal of Pharmacology, 735, 184-192.

Robertson, G. P. (2005). Significado funcional e terapêutico da deregulação de Akt no melanoma maligno. Cancer Metastasis Reviews, 24, 273-285.

Taschuk, R., & Griebel, P. J. (2012). Efeitos do microbioma comensal no desenvolvimento do sistema imunológico mucoso no trato gastrointestinal de ruminantes. Animal Health Research Reviews, 13(2)

Tokuhira, N., Kitagishi, Y., Suzuki, M., Minami, A., Nakanishi, A., Ono, Y., & Ogura, Y. (2015). PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy. International journal of molecular medicine, 35(1), 10-16.

Xie, X., Qu, P., Wu, H., Liu, P., Luo, J., Chi, J., & Xu, C. (2022). Circulating exosomal miR-21 mediates HUVEC proliferation and migration through PTEN/PI3K/AKT in Crohn’s disease. Annals of Medicine, 10(5).

Yang, Z, Zhao, T. Cheng, Y, Zhou, Y, Li, Y, Wang, X, Ge (Diosmetin regulates intestinal immune balance by inhibiting PI3K/AKT signaling to relieve 2, 4, 6-trinitrobenzene sulfonic acid-induced Crohn's disease-like colitis in mice. Nan Fang yi ke da xue xue bao= Journal of Southern Medical University,43(3),474-482.

Fang C, Pei Y, Peng Y, Lu H, Qu Y, Luo C, & Yang W. (2023) Network pharmacology and molecular docking reveal the mechanism of Qinghua Xiaoyong Formula in Crohn’s disease. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 27(4), 365.

Jalil, A T, Hassan, N. F, Abdulameer, S. J, Farhan, Z. M, Suleiman, A. A, Al‐Azzawi, A. K, & Fadhil, A. (2023) Phosphatidylinositol 3‐kinase signaling pathway and inflammatory bowel disease: current status and future prospects. Fundamental & Clinical Pharmacology, 37(5), 910-917.

Iranpanah, A, Kooshki, L, Moradi, S. Z, Saso, L, Fakhri, S, & Khan, H. (2023) The Exosome-Mediated PI3K/Akt/mTOR Signaling Pathway in Neurological Diseases. Pharmaceutics, 15(3), 1006. 2023.

Chawra, H. S, Agarwal, M, Mishra, A, Chandel, S. S, Singh, R. P, Dubey, G, & Singh, M. (2024) MicroRNA-21's Role in PTEN Suppression and PI3K/AKT Activation: Implications for Cancer Biology. Pathology-Research and Practice, 155091.

Basta, M, Guindi, C, & Erian, S. (2023) MiRNA-21 Regulates Multiple Factors in the Pathogenesis of IBD: A Literature Review. Undergraduate Research in Natural and Clinical Science and Technology Journal, 7, 1-14, 2023.

Wang, X, Li, X, Ma, X, Zhang, L, Han, T, & Zhang, D. Dihydromyricetin alleviates inflammatory bowel disease associated intestinal fibrosis by inducing autophagy through the PI3K/AKT/mTOR signaling pathway. Naunyn-Schmiedeberg's Archives of Pharmacology, 1-12, 2023.

Meyer, F, Wendling, D, Demougeot, C, Prati, C, Verhoeven, F. (2023). Cytokines and intestinal epithelial permeability: A systematic review. Autoimmunity reviews, 103331.

He, W. J, Lv, C. H., Chen, Z., Shi M, Zeng C. X., Hou, D. Q. S. (2023). The regulatory effect of phytochemicals on chronic diseases by targeting Nrf2-ARE signaling pathway. Antioxidants, 12(2), 236.

Panwar, V, Singh, A, Bhatt, M, Tonk, R. K, Azizov, S, Raza, A. S, & Garg M. (2023). Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal transduction and targeted therapy, 8(1), 375.

Nagoor Meeran, M. F, Arunachalam, S, Azimullah, S, Saraswathiamma, D, Albawardi, A, Almarzooqi, S O S. α-Bisabolol, a Dietary Sesquiterpene, Attenuates Doxorubicin-Induced Acute Cardiotoxicity in Rats by Inhibiting Cellular Signaling Pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 Inflammasomes Regulating Oxidative Stress and Inflammatory Cascades. International journal of molecular sciences, 24(18), 14013, 2023.

Zhao, J, Yan, Y, Zhen, S, Yu, L, Ding, J, & Tang, Q M. (2023b) LY294002 alleviates bone cancer pain by reducing mitochondrial dysfunction and the inflammatory response. International Journal of Molecular Medicine, 51(5), 1-12.

Pereira A. S. et al. Metodologia da pesquisa científica. UFSM. 6.2) Mendes, C. (2022). O que é uma revisão narrativa de literatura: exemplos e considerações da metodologia. https://www.youtube.com/watch?v=YlBWSVsxvRM 6.3) Rother, E. T. .2018.

De Lunetta A, & Guerra R. (2023) Metodologia da pesquisa científica e acadêmica. Revista OWL (OWL Journal) Revista Interdisciplinar de Ensino e Educação, 1(2), 149-159.

Published

16/03/2024

How to Cite

LIMA, A. R. S. .; CATALDO, F. M. .; COSTA, V. V. F. .; JANSEN, M. J. S. .; LIMA, G. M. .; ALVARENGA, D. A. .; NOGUEIRA, K. de M. . Genetic and molecular interactions in Crohn’s Disease: A systematic review. Research, Society and Development, [S. l.], v. 13, n. 3, p. e5513345011, 2024. DOI: 10.33448/rsd-v13i3.45011. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45011. Acesso em: 8 may. 2024.

Issue

Section

Review Article