Copper (Cu): Reactivity, coordination compounds and biological action




Metallic complexes; Hemocyanins; Metals; Blue copper proteins.


Copper (Cu) is one of the metals most used by human beings and its use, in the most diverse applications, goes back ancient times. Presenting a relatively high redox versatility (more than three (3) possible oxidation states with significant stability: Cu(I); Cu(II); Cu(III); and Cu(IV)), it is found mainly in oxidation states +1 (cuprous ion, Cu(I)) and +2 (cupric ion, Cu(II)). Copper (Cu) presents an extremely rich and varied coordination chemistry, starting with the significant differences found in the possible geometries for its respective metallic complexes. Cu(I) has a d10 electronic configuration, while Cu(II) has a d9 configuration and Cu(III) constitutes a d8 configuration. These three (3) distinct electronic configurations represent predispositions to different metal complex geometries (tetrahedral, distorted octahedral and planar quadratic, respectively). It also stands out for being one of the main transition metals in the biological environment, with special action in active sites of highly relevant metalloproteins, such as hemocyanins and blue copper proteins (Cu). The aim of this work is to present an introdutory study on the chemistry of copper (Cu), with special attention to its bioinorganic chemistry, especially the structure-function relationship of copper metalloproteins (Cu), through "Narrative Literature Review". In this way this article presents the chemistry of Copper (Cu), initiating from the fundamental properties of this element, commenting the copper (Cu) characteristics as coordination center, and finalizing with relevant examples of the copper (Cu) action in the biological medium, especially acting as active site of proteins.


Beltramini, M., Bubacco, L., Casella, L., Alzuet, G., Gullotti, M., & Salvato, B. (1995). The oxidation of hemocyanin – Kinetics, reaction mechanism and characterization of Met-hemocyanin product. European Journal of Biochemistry, 232, 98-05.

Bonaventura, J., Brunori, M., Wilson, M. T., Martin, J. P., Garlick, R. L., & Davis, B. J. (1978). Propriedades das hemoglobinas isoladas de artrópodos e moluscos do rio Amazonas. Acta Amazonica, 8, (4), 337-45.

Coates, C. J., & Decker, H. (2017). Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythin. Cellular and Molecular Life Sciences, 74, 293-17.

Decker, H. Hellmann, N., Jaenicke, E., Lieb, B., Meissner, U., & Markl, J. (2007). Minireview: Recent progress in hemocyanin research. Integrative and Comparative Biology, 47, (4), 631-44.

Farias, R. F. (org.). (2005). Química de Coordenação – fundamentos e atualidades. Editora Átomo. Campinas-SP. 316p.

Gray, H. B. (1986). Long-range Electron-transfer in Blue Copper Proteins. Chemical Society Reviews, 15, 17-30.

Haddad, P. S., Mauro, A. E., & Frem, R. C. G. (2001). Borohidreto Complexos de Cobre (I) contendo difosfinas. Caracterização espectroscópica e comportamento térmico. Química Nova, 24, (6), 786-89.

Hagner-Holler, S., Schoen, A., Erker, W., Marden, J. H., Rupprecht, R., Decker, H., & Burmester, T. (2004). A respiratory hemocyanin from an insect. Proceedings of the National Academy of Sciences of the USA, 101, (3), 871-74.

Huheey, J. E., Keiter, E. A., & Keiter, R. L. (1993). Inorganic Chemistry – Principles of Structure and Reactivity, (4a ed.), Harper Collins College Publishers.

Hussain, A., AlAjmi, M. F., Rehman, M. T., Amir, S., Husain, F. M., Alsalme, A., Siddiqui, M. A., AlKhedhairy, A. A., & Khan, R. A. (2019). Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Nature – Scientific Reports, 9, 5237(17p.).

Iakovidis, I., Delimaris, I., & Piperakis, S. M. (2011). Copper and Its Complexes in Medicine: A Biochemical Approach. Molecular Biology International, 2011, 1-13.

Jiewkok, A., Tsukimura, B., & Utarabhand, P. (2015). Purification and molecular cloning of hemocyanin from Fenneropenaeus merguiensis (De Man, 1888): Response to vibrio harveyi exposure. Journal of Crustacean Biology, 35, (5), 659-69.

Kong, Y., Chen, L., Ding, Z., Qin, J., Sun, S., Wang, L., Ye, J. (2016). Molecular Cloning, Characterization, and mRNA Expression of Hemocyanin Subunit in Oriental River Prawn Macrobrachium nipponense, International Journal of Genomics, 6404817, 1-9.

Koury, J. C., Oliveira, C. F., & Donangelo, C. M. (2007). Associação da concentração plasmática de cobre com metaloproteínas cobre-dependentes em atletas de elite. Revista Brasileira de Medicina do Esporte, 13, (4), 259-62.

Lee, J. D. (2003). Química Inorgânica não tão Concisa[trad. Henrique E. Toma; Koiti Araki, Reginaldo C. Rocha]. Editora Edgar Blücher Ltda., São Paulo-SP, Primeira Edição (terceira reimpressão da 5aed inglesa).

Lieb, B., Gebauer, W., Gatsogiannis, C., Depoix, F., Hellmann, N., Harasewych, M. G., Strong, E. E., Markl, J. (2010). Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550kDa polypeptide. Frontiers in Zoology, 7, 1-14.

Loewe, R. (1978). Hemocyanins in spiders. Journal of Physiology B, 128, 161-68.

Makino, N. (1972). Hemocyanin from Dolabella auricularia IV. Dissociation by DEAE-Cellulose. Journal of Biochemistry, 72, 29-37.

Matsumoto, M. Y., Toyama, M. M., Mayer, I., Winnischofer, H., Araki, K. & Toma, H. E. (2009). Eletronic Conduction and Electrocatalysis by Supramolecular Tetraruthenated Copper Porphyrazine Films. Journal of the Brazilian Chemical Society, 20, (4), 728-36.

McDowell, L. R. (1992). Minerals in Animal and Human Nutrition. Academic Press. Florida. 1-25 e 396-06.

Moreira, L. M., Lyon, J. P., Pereira, C., Silva, R. S., & Schultz, M. S. (2024). Manganês (Mn): Propriedades redox, química de coordenação e implicações biológicas. Research, Society and Development, 13, (2), 1-9.

Moreira, L. M., Lyon, J. P., & Teixeira, A. O. (2023a). A relação estrutura-atividade da vitamina b12 e das cobalaminas e suas correlações nutricionais. Research, Society and Development, 12, (11), e05121143658.

Moreira, L. M., Teixeira, A. O., & Lyon, J. P. (2023b). A flexibilidade dos anéis macrocíclicos e as diferentes conformações espaciais de compostos macrocíclicos metalados e não-metalados. Research, Society and Development, 12, (10), e28121043407.

Mukherjee, R. N. (2003). The bioinorganic chemistry of copper. Indian Journal of Chemistry, 42, (A), 2175-84.

Nakagaki, S., Friedermann, G. R., & Caiut, J. M. A. (2006). Metil coenzima M redutase (MCR) e o fator 430 (F430). Química Nova, 29, (5), 1003-08.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica [free e-book/repositó]. Santa Maria/RS. Ed. UAB/NTE/UFSM.ífica_final.pdf

Shriver, D. F., Atkins, P. W., Overton, T. L., Rourke, J. P., Weller, M. T., & Armstrong, F. A. (2008). Química Inorgânica [Trad. Roberto B. Farias; Cristina M. P. dos Santos], 4ed. Artmed Editora S. A., Porto Alegre-RS.

Sima, J., & Makanova, J. (1997). Photochemistry of iron(III) complexes. Coordination Chemistry Reviews, 160, 161-89.

Stadler, E. Estudos de Reatividade de Complexos Macrocíclicios de Ferro(II). São Paulo-SP, 143p. Tese (Doutorado) Instituto de Química, Universidade de São Paulo. Brasil. 1988.

Toma, H. E. (2000). Supramolecular Chemistry and Technology. Anais da Academia Brasileira de Ciências, 72, (1), 5-25.

Van Holde, K. E., Miller, K. I., & Decker, H. (2001). Hemocyanins and Invertebrate Evolution. The Journal of Biological Chemistry, 276, (19), 15563-66.

Walker, F. A. (1999). Magnetic spectroscopic (EPR, ESEEM, Mössabauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coordination Chemistry Reviews, 185-186, 471-34.

Weber, R.E., Hagerman, L. (1981). Oxygen and carbon dioxide transpoting qualities of hemocyanin in the hemolymph of a natant decapodPalaemon adspersus. Journal of comparative physiology, 145, 21-27.



How to Cite

MOREIRA, L. M.; TEIXEIRA, A. de O. .; LYON, J. P. . Copper (Cu): Reactivity, coordination compounds and biological action. Research, Society and Development, [S. l.], v. 13, n. 3, p. e5313345291, 2024. DOI: 10.33448/rsd-v13i3.45291. Disponível em: Acesso em: 15 jun. 2024.



Exact and Earth Sciences