Effect of anethole and anethole+itraconazole assiciantion on experimental arthritis induced by Paracoccidioides brasiliensis





Anethole; Itraconazole; Infectious arthritis; Antifungal.


In this study, the effect of treatment with anethole (AN) and the combination anethole+itraconazole (AN+IT) compared to IT, on infectious arthritis induced by Paracoccidiodes brasiliensis, was evaluated. The animals were treated for 14 days at doses of anethole (AN - 62.5, 125 and 250 mg/kg), itraconazole (IT - 12.5, 25 and 50 mg/kg) and the combination of anethole+itraconazole (AN+ IT - 62.5 and 12.5 mg/kg). The parameters evaluated were: the development of knee edema, the number of leukocytes recruited into the joint cavity, the body weight of the animals, the walking capacity, the plasmatic concentration of nitric oxide, the concentration of TNF in the knee joint exudate, the production of anti-Pb antibodies and the activity of plasma transaminases (AST and ALT). Histological changes in the right knee joint of the hind paw were evaluated using Hematoxylin-eosin and Grocott staining. The results showed that treatment with monotherapies and combinations reduced knee joint edema, the number of leukocytes recruited into the synovial cavity and improved the animals' gait. The concentration of plasma NO, tissue TNF and anti-Pb were reduced by treatment with IT at all doses tested and with the AN+IT combination. Treatment with AN only reduced the plasma concentration of NO and tissue TNF at a high dose. Altogether, the data showed that treatments with IT monotherapy and the combination of AN + IT showed a similar inhibitory effect on the development of arthritis.


Andrade, R. V., Da Silva, S. P., Torres, F. A., Poças-Fonseca, M. J., Silva-Pereira, I., Maranhão, A. Q., Campos, E. G., Moraes, L. M., Jesuíno, R. S., Pereira, M., Soares, C. M., Walter, M. E., Carvalho, M. J., Almeida, N. F., Brigido, M. M., & Felipe, M. S. (2005). Overview and perspectives the transcriptome of Paracoccidioides brasiliensis. Revista iberoamericana de micologia, 22(4), 203–212. https://doi.org/10.1016/s1130-1406(05)70044-9

Andrade, R. V., Paes, H. C., Nicola, A. M., de Carvalho, M. J., Fachin, A. L., Cardoso, R. S., Silva, S. S., Fernandes, L., Silva, S. P., Donadi, E. A., Sakamoto-Hojo, E. T., Passos, G. A., Soares, C. M., Brígido, M. M., & Felipe, M. S. (2006). Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells. BMC genomics, 7, 208. https://doi.org/10.1186/1471-2164-7-208

Bagagli, E., Bosco, S. M., Theodoro, R. C., & Franco, M. (2006). Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 6(5), 344–351. https://doi.org/10.1016/j.meegid.2005.12.002

Barrett, M. P., & Croft, S. L. (2012). Management of trypanosomiasis and leishmaniasis. British medical bulletin, 104(1), 175–196. https://doi.org/10.1093/bmb/lds031

Behnsen, J., Narang, P., Hasenberg, M., Gunzer, F., Bilitewski, U., Klippel, N., Rohde, M., Brock, M., Brakhage, A. A., & Gunzer, M. (2007). Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS pathogens, 3(2), e13. https://doi.org/10.1371/journal.ppat.0030013

Bellmann, R., & Smuszkiewicz, P. (2017). Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection, 45(6), 737–779. https://doi.org/10.1007/s15010-017-1042-z

Bernardino, S., Pina, A., Felonato, M., Costa, T. A., Frank de Araújo, E., Feriotti, C., Bazan, S. B., Keller, A. C., Leite, K. R., & Calich, V. L. (2013). TNF-α and CD8+ T cells mediate the beneficial effects of nitric oxide synthase-2 deficiency in pulmonary paracoccidioidomycosis. PLoS neglected tropical diseases, 7(8), e2325. https://doi.org/10.1371/journal.pntd.0002325

Brunton, L. L., Chabner, B., & Knollmann, B. C. (2012). The Pharmacological Bases of Goodman & Gilman´s Therapeutics. McGraw Hill Brasil.

Chainy, G. B., Manna, S. K., Chaturvedi, M. M., & Aggarwal, B. B. (2000). Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-kappaB, AP-1, JNK, MAPKK and apoptosis. Oncogene, 19(25), 2943–2950. https://doi.org/10.1038/sj.onc.1203614

Dąbrowska, M., Zielińska-Bliźniewska, H., Kwiatkowski, P., Łopusiewicz, Ł., Pruss, A., Kostek, M., Kochan, E., & Sienkiewicz, M. (2021). Inhibitory Effect of Eugenol and trans-Anethole Alone and in Combination with Antifungal Medicines on Candida albicans Clinical Isolates. Chemistry & biodiversity, 18(5), e2000843. https://doi.org/10.1002/cbdv.202000843

Domiciano, T. P., Dalalio, M. M., Silva, E. L., Ritter, A. M., Estevão-Silva, C. F., Ramos, F. S., Caparroz-Assef, S. M., Cuman, R. K., & Bersani-Amado, C. A. (2013). Inhibitory effect of anethole in nonimmune acute inflammation. Naunyn-Schmiedeberg's archives of pharmacology, 386(4), 331–338. https://doi.org/10.1007/s00210-012-0820-5

Eyles, J. L., Roberts, A. W., Metcalf, D., & Wicks, I. P. (2006). Granulocyte colony-stimulating factor and neutrophils--forgotten mediators of inflammatory disease. Nature clinical practice. Rheumatology, 2(9), 500–510. https://doi.org/10.1038/ncprheum0291

Fujita, K., Tatsumi, M., Ogita, A., Kubo, I., & Tanaka, T. (2014). Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. The FEBS journal, 281(4), 1304–1313. https://doi.org/10.1111/febs.12706

Fujita, K. I., Ishikura, T., Jono, Y., Yamaguchi, Y., Ogita, A., Kubo, I., & Tanaka, T. (2017). Anethole potentiates dodecanol's fungicidal activity by reducing PDR5 expression in budding yeast. Biochimica et biophysica acta. General subjects, 1861(2), 477–484. https://doi.org/10.1016/j.bbagen.2016.09.010

González, A., & Cano, L. E. (2001). Participación del polimorfonuclear neutrófilo en la respuesta inmune contra Paracoccidioides brasiliensis. Biomédica, 21(3), 264–74. https://doi.org/10.7705/biomedica.v21i3.1117

González, A., Sahaza, J. H., Ortiz, B. L., Restrepo, A., & Cano, L. E. (2003). Production of pro-inflammatory cytokines during the early stages of experimental Paracoccidioides brasiliensis infection. Medical mycology, 41(5), 391–399. https://doi.org/10.1080/13693780310001610038

GROCOTT R. G. (1955). A stain for fungi in tissue sections and smears using Gomori's methenamine-silver nitrate technic. American journal of clinical pathology, 25(8), 975–979. https://doi.org/10.1093/ajcp/25.8_ts.0975

Gunzer M. (2014). Traps and hyper inflammation - new ways that neutrophils promote or hinder survival. British journal of haematology, 164(2), 189–199. https://doi.org/10.1111/bjh.12608

Kim, D. K., Lillehoj, H. S., Lee, S. H., Jang, S. I., Park, M. S., Min, W., Lillehoj, E. P., & Bravo, D. (2013). Immune effects of dietary anethole on Eimeria acervulina infection. Poultry science, 92(10), 2625–2634. https://doi.org/10.3382/ps.2013-03092

Köhler, A., De Filippo, K., Hasenberg, M., van den Brandt, C., Nye, E., Hosking, M. P., Lane, T. E., Männ, L., Ransohoff, R. M., Hauser, A. E., Winter, O., Schraven, B., Geiger, H., Hogg, N., & Gunzer, M. (2011). G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 117(16), 4349–4357. https://doi.org/10.1182/blood-2010-09-308387

Kosalec, I., Pepeljnjak, S., & Kustrak, D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta pharmaceutica (Zagreb, Croatia), 55(4), 377–385.

Kumar, V., & Sharma, A. (2010). Neutrophils: Cinderella of innate immune system. International immunopharmacology, 10(11), 1325–1334. https://doi.org/10.1016/j.intimp.2010.08.012

Kunz, R. I., Coradini, J. G., Silva, L. I., Bertolini, G. R., Brancalhão, R. M., & Ribeiro, L. F. (2014). Effects of immobilization and remobilization on the ankle joint in Wistar rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 47(10), 842–849. https://doi.org/10.1590/1414-431x20143795

Loth, E. A., Biazin, S. K., Paula, C. R., Simão, R.deC, de Franco, M. F., Puccia, R., & Gandra, R. F. (2012). Experimental model of arthritis induced by Paracoccidioides brasiliensis in rats. Mycopathologia, 174(3), 187–191. https://doi.org/10.1007/s11046-012-9537-8

Loth, E. A., Biazim, S. K., Dos Santos, J. H., Puccia, R., Brancalhão, R. C., Chasco, L.deF., Gandra, R. F., Simão, R.deC., & de Franco, M. F. (2014). Dose response effect of Paracoccidioides brasiliensis in an experimental model of arthritis. Revista do Instituto de Medicina Tropical de Sao Paulo, 56(3), 259–264. https://doi.org/10.1590/s0036-46652014000300012

Martinez R. (2017). New Trends in Paracoccidioidomycosis Epidemiology. Journal of fungi (Basel, Switzerland), 3(1), 1. https://doi.org/10.3390/jof3010001

Mócsai A. (2013). Diverse novel functions of neutrophils in immunity, inflammation, and beyond. The Journal of experimental medicine, 210(7), 1283–1299. https://doi.org/10.1084/jem.20122220

Naranjo, M. S., Trujillo, M., Munera, M. I., Restrepo, P., Gomez, I., & Restrepo, A. (1990). Treatment of paracoccidioidomycosis with itraconazole. Journal of medical and veterinary mycology: bi-monthly publication of the International Society for Human and Animal Mycology, 28(1), 67–76. https://doi.org/10.1080/02681219080000091

Nathan C. (2006). Neutrophils and immunity: challenges and opportunities. Nature reviews. Immunology, 6(3), 173–182. https://doi.org/10.1038/nri1785

Nauseef W. M. (2007). How human neutrophils kill and degrade microbes: an integrated view. Immunological reviews, 219, 88–102. https://doi.org/10.1111/j.1600-065X.2007.00550.x

Nishikaku, A. S., Molina, R. F., Ribeiro, L. C., Scavone, R., Albe, B. P., Cunha, C. S., & Burger, E. (2009). Nitric oxide participation in granulomatous response induced by Paracoccidioides brasiliensis infection in mice. Medical microbiology and immunology, 198(2), 123–135. https://doi.org/10.1007/s00430-009-0113-x

Parente, A. F., Naves, P. E., Pigosso, L. L., Casaletti, L., McEwen, J. G., Parente-Rocha, J. A., & Soares, C. M. (2015). The response of Paracoccidioides spp. to nitrosative stress. Microbes and infection, 17(8), 575–585. https://doi.org/10.1016/j.micinf.2015.03.012

Park, K. S., Choi, J. J., Kim, W. U., Min, J. K., Park, S. H., & Cho, C. S. (2012). The efficacy of tramadol/acetaminophen combination tablets (Ultracet®) as add-on and maintenance therapy in knee osteoarthritis pain inadequately controlled by nonsteroidal anti-inflammatory drug (NSAID). Clinical rheumatology, 31(2), 317–323. https://doi.org/10.1007/s10067-011-1818-y

Pino-Tamayo, P. A., Puerta-Arias, J. D., Lopera, D., Urán-Jiménez, M. E., & González, Á. (2016). Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis. Mediators of inflammation, 2016, 3183285. https://doi.org/10.1155/2016/3183285

Ponte, E. L., Sousa, P. L., Rocha, M. V., Soares, P. M., Coelho-de-Souza, A. N., Leal-Cardoso, J. H., & Assreuy, A. M. (2012). Comparative study of the anti-edematogenic effects of anethole and estragole. Pharmacological reports: PR, 64(4), 984–990. https://doi.org/10.1016/s1734-1140(12)70895-2

Ramos, S. P., Sano, A., Ono, M. A., Camargo, Z. P., Estevão, D., Miyaji, M., Nishimura, K., & Itano, E. N. (2005). Antigenuria and antigenaemia in experimental murine paracoccidioidomycosis. Medical mycology, 43(7), 631–636. https://doi.org/10.1080/13693780400004786

Puerta-Arias, J. D., Pino-Tamayo, P. A., Arango, J. C., & González, Á. (2016). Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis. PloS one, 11(9), e0163985. https://doi.org/10.1371/journal.pone.0163985

Restrepo, A., McEwen, J. G., & Castañeda, E. (2001). The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Medical mycology, 39(3), 233–241. https://doi.org/10.1080/mmy.

Restrepo, A., Cano, L. E., & Gonzalez, Á. (2015). The power of the small: the example of Paracoccidioides brasiliensis CONIDIA. Revista do Instituto de Medicina Tropical de Sao Paulo, 57 Suppl 19(Suppl 19), 5–10. https://doi.org/10.1590/S0036-46652015000700003

Ricci, G., Mota, F. T., Wakamatsu, A., Serafim, R. C., Borra, R. C., & Franco, M. (2004). Canine paracoccidioidomycosis. Medical mycology, 42(4), 379–383. https://doi.org/10.1080/1369378032000141417

Ricci-Azevedo, R., Gonçales, R. A., Roque-Barreira, M. C., & Girard, D. (2018). Human neutrophils are targets to paracoccin, a lectin expressed by Paracoccidioides brasiliensis. Inflammation research: official journal of the European Histamine Research Society ... [et al.], 67(1), 31–41. https://doi.org/10.1007/s00011-017-1093-8

Ritter, A. M., Domiciano, T. P., Verri, W. A., Jr, Zarpelon, A. C., da Silva, L. G., Barbosa, C. P., Natali, M. R., Cuman, R. K., & Bersani-Amado, C. A. (2013). Antihypernociceptive activity of anethole in experimental inflammatory pain. Inflammopharmacology, 21(2), 187–197. https://doi.org/10.1007/s10787-012-0152-6

Ritter, A. M. V., Hernandes, L., da Rocha, B. A., Estevão-Silva, C. F., Wisniewski-Rebecca, E. S., Cezar, J. D. S., Caparroz-Assef, S. M., Cuman, R. K. N., & Bersani-Amado, C. A. (2017). Anethole reduces inflammation and joint damage in rats with adjuvant-induced arthritis. Inflammation research: official journal of the European Histamine Research Society ... [et al.], 66(8), 725–737. https://doi.org/10.1007/s00011-017-1053-3

Rocha, F. F., Campos, M.G. (2007). Monoarthritis as manifestation of paracoccidioidomycoses. Pan-american jornal of infectology. 9(1), 31-33

Romagnolo, A. G., de Quaglia E Silva, J. C., Della Coletta, A. M., Gardizani, T. P., Martins, A. T. L., Romagnoli, G. G., Kaneno, R., de Campos Soares, A. M. V., De Faveri, J., & Dias-Melicio, L. A. (2018). Role of Dectin-1 receptor on cytokine production by human monocytes challenged with Paracoccidioides brasiliensis. Mycoses, 61(4), 222–230. https://doi.org/10.1111/myc.12725

Rosato, A., Vitali, C., De Laurentis, N., Armenise, D., & Antonietta Milillo, M. (2007). Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine: international journal of phytotherapy and phytopharmacology, 14(11), 727–732. https://doi.org/10.1016/j.phymed.2007.01.005

Rosato, A., Vitali, C., Gallo, D., Balenzano, L., & Mallamaci, R. (2008). The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine: international journal of phytotherapy and phytopharmacology, 15(8), 635–638. https://doi.org/10.1016/j.phymed.2008.05.001

Sabry, B. A., Farouk, A., & Badr, A. N. (2021). Bioactivity evaluation for volatiles and water extract of commercialized star anise. Heliyon, 7(8), e07721. https://doi.org/10.1016/j.heliyon.2021.e07721

Sergejeva, S., & Lindén, A. (2009). Impact of IL-17 on cells of the monocyte lineage in health and disease. Endocrine, metabolic & immune disorders drug targets, 9(2), 178–186. https://doi.org/10.2174/187153009788452444

Shikanai-Yasuda, M. A., Mendes, R. P., Colombo, A. L., Telles, F. Q., Kono, A., Paniago, A. M. M., Nathan, A., Valle, A. C. F. D., Bagagli, E., Benard, G., Ferreira, M. S., Teixeira, M. M., Vergara, M. L. S., Pereira, R. M., Cavalcante, R. S., Hahn, R., Durlacher, R. R., Khoury, Z., Camargo, Z. P., Moretti, M. L., Martinez, R. (2018). II Consenso Brasileiro em Paracoccidioidomicose - 2017 [Brazilian guidelines for the clinical management of paracoccidioidomycosis]. Epidemiologia e servicos de saude: revista do Sistema Unico de Saude do Brasil, 27(spe), e0500001. https://doi.org/10.5123/S1679-49742018000500001

Shukla, H. S., Tripathi, S. G. (1987). Antifungal substance in the essential oil of Anise (Pimpinella anisum L.). Agricultural and Biological Chemistry, 51(7), 1991-1993. https://doi.org/10.1080/00021369.1987.10868311

Singh S. (2007). From exotic spice to modern drug? Cell, 130(5), 765–768. https://doi.org/10.1016/j.cell.2007.08.024

Sung, Y. Y., & Kim, H. K. (2013). Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in HaCaT human keratinocytes. Journal of ethnopharmacology, 149(3), 626–632. https://doi.org/10.1016/j.jep.2013.07.013

Torres, I., Hernandez, O., Tamayo, D., Muñoz, J. F., Leitão, N. P., Jr, García, A. M., Restrepo, A., Puccia, R., & McEwen, J. G. (2013). Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis. PloS one, 8(7), e68434. https://doi.org/10.1371/journal.pone.0068434

Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21(2), 215–226. https://doi.org/10.1016/j.immuni.2004.07.006

Ueda, Y., Tahara, Y. O., Miyata, M., Ogita, A., Yamaguchi, Y., Tanaka, T., & Fujita, K. I. (2021). Involvement of a Multidrug Efflux Pump and Alterations in Cell Surface Structure in the Synergistic Antifungal Activity of Nagilactone E and Anethole against Budding Yeast Saccharomyces cerevisiae. Antibiotics (Basel, Switzerland), 10(5), 537. https://doi.org/10.3390/antibiotics10050537

Visbal, G., San-Blas, G., Murgich, J., & Franco, H. (2005). Paracoccidioides brasiliensis, paracoccidioidomycosis, and antifungal antibiotics. Current drug targets. Infectious disorders, 5(3), 211–226. https://doi.org/10.2174/1568005054880118

Wagner, G., Moertl, D., Glechner, A., Mayr, V., Klerings, I., Zachariah, C., Van den Nest, M., Gartlehner, G., & Willinger, B. (2021). Paracoccidioidomycosis Diagnosed in Europe-A Systematic Literature Review. Journal of fungi (Basel, Switzerland), 7(2), 157. https://doi.org/10.3390/jof7020157

Wisniewski-Rebecca, E. S., Rocha, B. A., Wiirzler, L. A., Cuman, R. K., Velazquez-Martinez, C. A., & Bersani-Amado, C. A. (2015). Synergistic effects of anethole and ibuprofen in acute inflammatory response. Chemico-biological interactions, 242, 247–253. https://doi.org/10.1016/j.cbi.2015.10.013

Yang, J. F., Yang, C. H., Chang, H. W., Yang, C. S., Wang, S. M., Hsieh, M. C., & Chuang, L. Y. (2010). Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens. Journal of medicinal food, 13(5), 1254–1262. https://doi.org/10.1089/jmf.2010.1086

Yutani, M., Hashimoto, Y., Ogita, A., Kubo, I., Tanaka, T., & Fujita, K. (2011). Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole. Phytotherapy research: PTR, 25(11), 1707–1713. https://doi.org/10.1002/ptr.3579




How to Cite

WISNIEWSKI, E. S.; ROCHA, B. A. da; LOTH, E. A.; RIBEIRO, L. de F. C. .; COSTA, R. M.; GANDRA, R. F. .; AMADO, C. A. B. . Effect of anethole and anethole+itraconazole assiciantion on experimental arthritis induced by Paracoccidioides brasiliensis. Research, Society and Development, [S. l.], v. 13, n. 3, p. e11013345343, 2024. DOI: 10.33448/rsd-v13i3.45343. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45343. Acesso em: 13 jun. 2024.



Health Sciences