Targeted therapies in the treatment of glioblastoma in adults: A scoping review
DOI:
https://doi.org/10.33448/rsd-v13i4.45474Keywords:
Glioblastoma; Grade IV astrocytoma; Glioblastoma multiforme; Giant cell glioblastoma; Targeted therapy; Molecular targeted therapy.Abstract
Within the spectrum of primary neoplasms of the central nervous system, glioblastoma is the most prevalent, aggressive and lethal subtype, despite therapeutic interventions. In this scenario, target therapy, by developing drugs targeted at specific molecules of the carcinogenic process, emerges as a truly revolutionary option. Therefore, this review aims to map in the literature the target therapies that are or can be used in the treatment of glioblastoma in adults aiming at cancer regression. This is a methodological scoping review study. The databases used were: VHL, PUBMED, EMBASE, SCOPUS and BDTD. In total, 637 studies were identified, of which 31 were selected according to inclusion criteria; In addition, 4 articles were included manually. Upon reading, some drugs, such as apatinib, osimertinib and cetuximab, proved to be effective in the studies carried out, however, they lack applications in larger clinical trials to support their incorporation into standard therapy regimens. Bevacizumab is already established in the treatment of recurrent glioblastoma and/or second- or third-line therapy. Finally, it was concluded that although the treatment and prognosis of patients with glioblastoma still remain unclear today, it is believed and hoped that in a promising future targeted molecular therapy will serve as an ally in the curative treatment for this cancer, as that there is already evidence that some improve quality of life with symptom relief, increase the time free from disease progression and/or patient survival, even for a certain period of time.
References
Ahir, B. K., Engelhard, H. H., & Lakka, S. S. (2020). Tumor Development And Angiogenesis In Adult Brain Tumor: Glioblastoma. Molecular Neurobiology, 57(5), 2461–2478. Https://Doi.Org/10.1007/S12035-020-01892-8
Aldaz, P., & Arozarena, I. (2021). Tyrosine kinase inhibitors in adult glioblastoma: An (un)closed chapter? Cancers, 13(22), 5799. https://doi.org/10.3390/cancers13225799
Alves, M. B. B. (2022). Terapias avançadas para o glioblastoma [Advanced therapies for glioblastoma] (Dissertação de Mestrado [Master’s thesis]). Universidade de Coimbra. https://estudogeral.uc.pt/bitstream/10316/105779/1/Terapias%20Avan%C3%A7adas%20para%20o%20Glioblastoma.pdf
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Belda-Iniesta, C., Carpeño, C., Saenz, E. C., Gutiérrez, M., Perona, R., & Barón, M. G. (2006). Long term responses with cetuximab therapy in glioblastoma multiforme. Cancer Biology & Therapy, 5(8), 912–914. https://doi.org/10.4161/cbt.5.8.3118
Birzu, C., French, P., Caccese, M., Cerretti, G., Idbaih, A., Zagonel, V., & Lombardi, G. (2020). Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers, 13(1), 47. https://doi.org/10.3390/cancers13010047
Dias, T. A. O., Cout, D. S., & Cardoso, E. J. R. (2022). Quality of life in glioblastoma after the introduction of temozolomide: A systematic review. Research, Society and Development, 11(15), e311111537205. https://doi.org/10.33448/rsd-v11i15.37205
Ding, X., Sun, J., Fan, T., & Li, B. (2018). A case report of targeted therapy with apatinib in a patient with recurrent high grade glioma. Medicine, 97(22), e10859. https://doi.org/10.1097/MD.0000000000010859
El Atat, O., Naser, R., Abdelkhalek, M., Habib, R. A., & El Sibai, M. (2023). Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncology Letters, 25(2), 46. https://doi.org/10.3892/ol.2022.13632
Eimer, S., Belaud-Rotureau, M. A., Airiau, K., Jeanneteau, M., Laharanne, E., Véron, N., Vital, A., Loiseau, H., Merlio, J. P., & Belloc, F. (2011). Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death. Cancer Biology & Therapy, 11(12), 1017–1027. https://doi.org/10.4161/cbt.11.12.15693
Fanelli, G. N., Grassini, D., Ortenzi, V., Pasqualetti, F., Montemurro, N., Perrini, P., Naccarato, A. G., & Scatena, C. (2021). Decipher the glioblastoma microenvironment: The first milestone for new groundbreaking therapeutic strategies. Genes, 12(3), 445. https://doi.org/10.3390/genes12030445
Faustino, A. C. C. (2022). Padrões de recorrência e desfecho de glioblastoma multiforme tratados com quimiorradioterapia e temozolomida adjuvante [Dissertação de mestrado, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto]. https://doi.org/10.11606/D.17.2022.tde-08092022-160858
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer. Advance online publication. https://doi.org/10.1002/ijc.33588
Gritsch, S., Batchelor, T. T., & Gonzalez Castro, L. N. (2022). Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer, 128(1), 47–58. https://doi.org/10.1002/cncr.33918
Hottinger, A.F., Stupp, R., & Homicsko, K. (2014). Standards of care and novel approaches in the management of glioblastoma multiforme. Chinese Journal of Cancer, 33(1), 32–39. https://doi.org/10.5732/cjc.013.10207
Jiménez-Morales, J. M., Hernández-Cuenca, Y. E., Reyes-Abrahantes, A., Ruiz-García, H., Barajas-Olmos, F., García-Ortiz, H., Orozco, L., Quiñones-Hinojosa, A., Reyes-González, J., & Abrahantes-Pérez, M. D. C. (2022). MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. Journal of Controlled Release, 349, 712–730. https://doi.org/10.1016/j.jconrel.2022.07.027
König, D., Hench, J., Frank, S., Dima, L., Bratic Hench, I., & Läubli, H. (2022). Larotrectinib response in NTRK3 fusion-driven diffuse high-grade glioma. Pharmacology, 107(7-8), 433–438. https://doi.org/10.1159/000524399
Lent, R. (2010). Cem Bilhões de Neurônios (2a ed). Editora Atheneu.
Lombardi, G., Caccese, M., Padovan, M., Cerretti, G., Pintacuda, G., Manara, R., Di Sarra, F., & Zagonel, V. (2021). Regorafenib in recurrent glioblastoma patients: A large and monocentric real-life study. Cancers, 13(18), 4731. https://doi.org/10.3390/cancers13184731
Mischel, P.S., & Cloughesy, T.F. (2003). Targeted molecular therapy of GBM. Brain Pathology (Zurich, Switzerland), 13(1), 52-61. https://doi.org/10.1111/j.1750-3639.2003.tb00006.x
Molinaro, A.M., Taylor, J.W., Wiencke, J.K., & Wrensch, M.R. (2019). Genetic and molecular epidemiology of adult diffuse glioma. Nature Reviews Neurology, 15(7), 405-417. https://doi.org/10.1038/s41582-019-0220-2
National Cancer Institute. (2023). Adult Central Nervous System Tumors Treatment – Health Professional Version. Available at https://www.cancer.gov/types/brain/hp/adult-brain-treatment-pdq#_1.
Nguyen, H. M., Guz-Montgomery, K., Lowe, D. B., & Saha, D. (2021). Pathogenetic features and current management of glioblastoma. Cancers, 13(4), 856. https://doi.org/10.3390/cancers13040856
Okamoto, S., Nitta, M., Maruyama, T., Sawada, T., Komori, T., Okada, Y., & Muragaki, Y. (2016). Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathology, 33(2), 129–136. https://doi.org/10.1007/s10014-016-0248-6
Orzetti, S., Tommasi, F., Bertola, A., Bortolin, G., Caccin, E., Cecco, S., Ferrarin, E., Giacomin, E., & Baldo, P. (2022) Genetic therapy and molecular targeted therapy in oncology: Safety, pharmacovigilance, and perspectives for research and clinical practice. International Journal of Molecular Sciences, 23(6), 3012. https://doi.org/10.3390/ijms23063012
Qin, A., Musket, A., Musich, P. R., Schweitzer, J. B., & Xie, Q. (2021). Receptor tyrosine kinases as druggable targets in glioblastoma: do signaling pathways matter?. Neuro-oncology Advances, 3(1). https://doi.org/10.1093/noajnl/vdab133
Reardon, D.A., Turner, S., Peters, K.B., Desjardins, A., Gururangan, S., Sampson, J.H., McLendon , R.E., Herndon, J.E., Jones, L.W., Kirkpatrick, J.P., Friedman, A.H., Vredenburgh, J.J., Bigner, D.D., & Friedman, H.S. (2011). A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. Journal of the National Comprehensive Cancer Network, (4), 414-427. https://doi.org/10.6004/jnccn.2011.0038
Rhun, E. L., Chamberlain, M. C., Zairi, F., Delmaire, C., Idbaih, A., Renaud, F., Maurage, C. A., & Grégoire, V. (2015). Patterns of response to crizotinib in recurrent glioblastoma according to ALK and MET molecular profile in two patients. CNS Oncology, 4(6), 381–386. https://doi.org/10.2217/cns.15.30
Schäfer, N., Gielen, G. H., Rauschenbach, L., Kebir, S., Till, A., Reinartz, R., Simon, M., Niehusmann, P., Kleinschnitz, C., Herrlinger, U., Pietsch, T., Scheffler, B., & Glas, M. (2019). Longitudinal heterogeneity in glioblastoma: Moving targets in recurrent versus primary tumors. Journal of Translational Medicine, 17(1), 96. https://doi.org/10.1186/s12967-019-1846-y
Scherm, A., Ippen, F. M., Hau, P., Baurecht, H., Wick, W., Gempt, J., Knüttel, H., Leitzmann, M. F., & Seliger, C. (2023). Targeted therapies in patients with newly diagnosed glioblastoma—A systematic meta-analysis of randomized clinical trials. International Journal of Cancer, 152(11), 2373–2382. https://doi.org/10.1002/ijc.34433
Silva, R. A., Da Costa, P. R., & Dos Santos, R. G. (2015). Avaliação dos efeitos da radiação gama de alta taxa de dose sobre glioma humano. In International Nuclear Atlantic Conference - INAC 2015. São Paulo, SP, Brazil, October 4-9, 2015. Associação Brasileira de Energia Nuclear - ABEN. https://d1wqtxts1xzle7.cloudfront.net/60838785/INAC_2015_-_Avaliacao_dos_efeitos_da_radiacao_de_alta_taxa_de_dose_sobre_glioma_humano12019 1008-123503-4vzco5-libre.pdf?1570559516=&response-content-disposition=inline%3B+filename%3DAvaliacao_dos_efeitos_da_radiacao_gama_d.pdf& Expires=1712330133&Signature=MRYShvdzwgSlbR8e5rdiMua4w~~RndVOLScOcRBprV2HJ42eBNP-runH88QwZcQEeePitXHxF7gp3O5Byeg0lg6-6VI4sjhNK21grFW236H2CGuDGS80yRVAY3Yk3NfPZMtfjdyEDtFD274Oqqploj8vXPVhoU9BqmKyWXQFG3fy1v~AOnshpr1JnLT7hl1oTrJgaNV WtNB97PM~0N8P~ukNZOV7S0yGR3s9c2WjqIIV0WtZ45BjdOwkbqG5MdwXJEe96XvMwwD-qPrQanStKLgOPnk1xV0V20TAFo2zQ06Mccy6JOomt Q8i7P03qBxt8gTGK0Xv~9qGNS8HOtqXvw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
Sim, H .W., Morgan, E .R., & Mason, W .P. (2018). Contemporary management of high-grade gliomas. CNS Oncology, 7(1), 51-65. https://doi.org/10.2217/cns-2017-0026
Sousa, G. C. de., Scantamburlo Junior, D., & Simonato, L. E. . (2021). A heterogeneidade do glioblastoma e tratamentos. Revista Ibero-Americana De Humanidades, Ciências E Educação, 7(12), 194–205. https://doi.org/10.51891/rease.v7i12.3387
Staedtke, V., Bai, R.Y., & Laterra, J. (2016). Investigational new drugs for brain cancer. Expert Opinion on Investigational Drugs, 25(8), 937–956. https://doi.org/10.1080/13543784.2016.1182497
Stensjoen, A. L., Solheim, O., Kvistad, K. A., Haberg, A. K., Salvesen, O., & Berntsen, E. M. (2015). Growth dynamics of untreated glioblastomas in vivo. Neuro-Oncology, 17(10), 1402–1411. https://doi.org/10.1093/neuonc/nov029
Szklener, K., Rodzajewska, A., Kurylo, W., & Mandziuk, S. (2022). New therapeutic strategies based on molecularly targeted therapy in glioblastoma – a case report and review of the literature. Current Issues in Pharmacy and Medical Sciences, 35(4), 206-211. https://doi.org/10.2478/cipms-2022-0036
Tejera, D., Kushnirsky, M., Gultekin, S. H., Lu, M., Steelman, L., & de la Fuente, M. I. (2020). Ivosidenib, an IDH1 inhibitor, in a patient with recurrent, IDH1-mutant glioblastoma: a case report from a Phase I study. CNS Oncology, 9(3), CNS62. https://doi.org/10.2217/cns-2020-0014
Wagle, N., Nguyen, M., Carrillo, J., Truong, J., Dobrawa, L., & Kesari, S. (2020). Characterization of molecular pathways for targeting therapy in glioblastoma. Chinese Clinical Oncology, 9(6), 77. https://doi.org/10.21037/cco-20-124
Wang, Y., Liang, D., Chen, J., Chen, H., Fan, R., Gao, Y., Gao, Y., Tao, R., & Zhang, H. (2021). Targeted therapy with anlotinib for a patient with an oncogenic FGFR3-TACC3 fusion and recurrent glioblastoma. The Oncologist, 26(3), 173–177. https://doi.org/10.1002/onco.13530
Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., Batchelor, T. T., Bindra, R. S., Chang, S. M., Chiocca, E. A., Cloughesy, T. F., DeGroot, J. F., Galanis, E., Gilbert, M. R., Hegi, M. E., Horbinski, C., Huang, R. Y., Lassman, A. B., Le Rhun, E., Lim, M., … van den Bent, M. J. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113. https://doi.org/10.1093/neuonc/noaa106
Winograd, E., Germano, I., Wen, P., Olson, J. J., & Ormond, D. R. (2022). Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. Journal of Neuro-Oncology, 158(2), 265–321. https://doi.org/10.1007/s11060-021-03876-7
Yang, K., Wu, Z., Zhang, H., Zhang, N., Wu, W., Wang, Z., Dai, Z., Zhang, X., Zhang, L., Peng, Y., Ye, W., Zeng, W., Liu, Z., & Cheng, Q. (2022). Glioma targeted therapy: Insight into future of molecular approaches. Molecular Cancer, 21(1), 39. https://doi.org/10.1186/s12943-022-01513-z
Yuntao, L., Songtao, Q., Hui, O., Zhiyong, L., Yi, Y.Y., Jin, S., Xiaoyu , Q., & Yiping, M. (2014). Preliminary clinical analysis and evaluation of bevacizumab in the treatment of recurrent malignant glioma in Chinese patients. Chinese Medical Journal, 94 (15): 1165-1168. https://doi.org/10.3760/cma.j.issn.0376-2491.2014.15.012
Zhang, H., Chen, F., Wang, Z., & Wu, S. (2017). Successful treatment with apatinib for refractory recurrent malignant gliomas: A case series. OncoTargets and Therapy, 10, 837–845. https://doi.org/10.2147/OTT.S119129
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rubia Nara Alves Ramos; Thelma Yuri Lago Matsuda; Alexandra Czepula
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.