Advances in the understanding of the neural basis of emotional regulation - A narrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46553

Keywords:

Afect; Emotional regulation; Cognitive restructuring; Prefrontal cortex; Amygdala.

Abstract

Emotional regulation is the use of conscious or unconscious processes that alter the nature, intensity, or duration of emotions. Dysfunctional emotions are a core part of the symptomatology of mental disorders. They are a major source of psychological distress and the main reason for seeking help in mental health. Emotional regulation is an integral part of different approaches in psychotherapy, and greater knowledge about the neural processes involved can enable the improvement of treatment strategies. The aim of this article is to present a narrative review of the literature that addresses advances in understanding the neural bases involved in emotion regulation strategies. Emotions result from the activation of several neural networks in a joint and integrated work. This network includes areas that play a prominent role, such as the thalamus, amygdala, insula, ventral striatum, medial prefrontal cortex, orbitofrontal cortex, somatosensory cortex, and anterior cingulate. These areas are also involved in emotional regulation either as a target or as agents of regulation. Reappraisal, which is the most studied strategy, in addition to decreasing amygdala activity, recruits prefrontal and parietal regions involved in non-affective cognitive control processes, such as response inhibition, task switching, and working memory. Research in this field with the new approaches of identifying distinct circuits by optogenetic and chemogenetic methods is quite promising. Deepening knowledge of these processes has the potential to provide a cross-theoretical and transdiagnostic point of convergence in psychotherapy.

References

Adolphs, R., Mlodinow, L., & Barrett, L. F. (2019). What is an emotion? Current Biology, 29(20), R1060–R1064. https://doi.org/10.1016/j.cub.2019.09.008

Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004

Baratta, M. V., Lucero, T. R., Amat, J., Watkins, L. R., & Maier, S. F. (2008). Role of the ventral medial prefrontal cortex in mediating behavioral control-induced reduction of later conditioned fear. Learning & Memory, 15(2), 84–87. https://doi.org/10.1101/lm.800308

Baratta, M. V., & Maier, S. F. (2019). New tools for understanding coping and resilience. Neuroscience Letters, 693, 54–57. https://doi.org/10.1016/j.neulet.2017.09.049

Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60. https://doi.org/10.1038/s41398-018-0106-x

Bolles, R. C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77(1), 32–48. https://doi.org/10.1037/h0028589

Bouton, M. E., Maren, S., & McNally, G. P. (2021). Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 101(2), 611–681. https://doi.org/10.1152/physrev.00016.2020

Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154

Cameron, G., Roche, B., Schlund, M. W., & Dymond, S. (2016). Learned, instructed and observed pathways to fear and avoidance. Journal of Behavior Therapy and Experimental Psychiatry, 50, 106–112. https://doi.org/10.1016/j.jbtep.2015.06.003

Catania, A. C., Matthews, B. A., & Shimoff, E. (1982). INSTRUCTED VERSUS SHAPED HUMAN VERBAL BEHAVIOR: INTERACTIONS WITH NONVERBAL RESPONDING. Journal of the Experimental Analysis of Behavior, 38(3), 233–248. https://doi.org/10.1901/jeab.1982.38-233

Christianson, J. P., Fernando, A. B. P., Kazama, A. M., Jovanovic, T., Ostroff, L. E., & Sangha, S. (2012). Inhibition of Fear by Learned Safety Signals: A Mini-Symposium Review. Journal of Neuroscience, 32(41), 14118–14124. https://doi.org/10.1523/JNEUROSCI.3340-12.2012

Christianson, J. P., Flyer-Adams, J. G., Drugan, R. C., Amat, J., Daut, R. A., Foilb, A. R., Watkins, L. R., & Maier, S. F. (2014). Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00348

Christianson, J. P., Jennings, J. H., Ragole, T., Flyer, J. G. N., Benison, A. M., Barth, D. S., Watkins, L. R., & Maier, S. F. (2011). Safety Signals Mitigate the Consequences of Uncontrollable Stress Via a Circuit Involving the Sensory Insular Cortex and Bed Nucleus of the Stria Terminalis. Biological Psychiatry, 70(5), 458–464. https://doi.org/10.1016/j.biopsych.2011.04.004

Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience & Biobehavioral Reviews, 48, 22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003

Cooper, S. E., Grillon, C., & Lissek, S. (2018). Impaired discriminative fear conditioning during later training trials differentiates generalized anxiety disorder, but not panic disorder, from healthy control participants. Comprehensive Psychiatry, 85, 84–93. https://doi.org/10.1016/j.comppsych.2018.07.001

Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A Meta-analysis of Functional Neuroimaging Studies of Self- and Other Judgments Reveals a Spatial Gradient for Mentalizing in Medial Prefrontal Cortex. Journal of Cognitive Neuroscience, 24(8), 1742–1752. https://doi.org/10.1162/jocn_a_00233

Dixon, M. L., Moodie, C. A., Goldin, P. R., Farb, N., Heimberg, R. G., & Gross, J. J. (2020). Emotion Regulation in Social Anxiety Disorder: Reappraisal and Acceptance of Negative Self-beliefs. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(1), 119–129. https://doi.org/10.1016/j.bpsc.2019.07.009

Ellard, K. K., Barlow, D. H., Whitfield-Gabrieli, S., Gabrieli, J. D. E., & Deckersbach, T. (2017). Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Social Cognitive and Affective Neuroscience, 12(6), 1009–1021. https://doi.org/10.1093/scan/nsx025

Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimulation, 7(1), 105–112. https://doi.org/10.1016/j.brs.2013.08.006

Fernando, A. B. P., Urcelay, G. P., Mar, A. C., Dickinson, A., & Robbins, T. W. (2014). Safety signals as instrumental reinforcers during free-operant avoidance. Learning & Memory, 21(9), 488–497. https://doi.org/10.1101/lm.034603.114

Foa, E. B., & McLean, C. P. (2016). The Efficacy of Exposure Therapy for Anxiety-Related Disorders and Its Underlying Mechanisms: The Case of OCD and PTSD. Annual Review of Clinical Psychology, 12(1), 1–28. https://doi.org/10.1146/annurev-clinpsy-021815-093533

Gao, W., Biswal, B., Chen, S., Wu, X., & Yuan, J. (2021). Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. NeuroImage, 232, 117918. https://doi.org/10.1016/j.neuroimage.2021.117918

Garland, E. L., Farb, N. A., R. Goldin, P., & Fredrickson, B. L. (2015). Mindfulness Broadens Awareness and Builds Eudaimonic Meaning: A Process Model of Mindful Positive Emotion Regulation. Psychological Inquiry, 26(4), 293–314. https://doi.org/10.1080/1047840X.2015.1064294

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience: The biology of the mind (Fifth edition). W.W. Norton & Company.

Goldin, P. R., Manber, T., Hakimi, S., Canli, T., & Gross, J. J. (2009). Neural Bases of Social Anxiety Disorder: Emotional Reactivity and Cognitive Regulation During Social and Physical Threat. Archives of General Psychiatry, 66(2), 170. https://doi.org/10.1001/archgenpsychiatry.2008.525

Goode, T. D., & Maren, S. (2014). Animal Models of Fear Relapse. ILAR Journal, 55(2), 246–258. https://doi.org/10.1093/ilar/ilu008

Graeff, F. G., Guimarães, F. S., De Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54(1), 129–141. https://doi.org/10.1016/0091-3057(95).02135-3

Gross, J. J. (2015). Emotion Regulation: Current Status and Future Prospects. Psychological Inquiry, 26(1), 1–26. https://doi.org/10.1080/1047840X.2014.940781

Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501. https://doi.org/10.1038/nrn3524

Haaker, J., Lonsdorf, T. B., Schümann, D., Menz, M., Brassen, S., Bunzeck, N., Gamer, M., & Kalisch, R. (2015). Deficient inhibitory processing in trait anxiety: Evidence from context-dependent fear learning, extinction recall and renewal. Biological Psychology, 111, 65–72. https://doi.org/10.1016/j.biopsycho.2015.07.010

Hagihara, K. M., Bukalo, O., Zeller, M., Aksoy-Aksel, A., Karalis, N., Limoges, A., Rigg, T., Campbell, T., Mendez, A., Weinholtz, C., Mahn, M., Zweifel, L. S., Palmiter, R. D., Ehrlich, I., Lüthi, A., & Holmes, A. (2021). Intercalated amygdala clusters orchestrate a switch in fear state. Nature, 594(7863), 403–407. https://doi.org/10.1038/s41586-021-03593-1

Hayes, S. C., & Hofmann, S. G. (Orgs.). (2018). Process-based CBT: The science and core clinical competencies of cognitive behavioral therapy, pg 330-340. New Harbinger Publications, Inc.

Kaczkurkin, A. N., & Foa, E. B. (2015). Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues in Clinical Neuroscience, 17(3), 337–346.

Kalokerinos, E. K., Résibois, M., Verduyn, P., & Kuppens, P. (2017). The temporal deployment of emotion regulation strategies during negative emotional episodes. Emotion, 17(3), 450–458. https://doi.org/10.1037/emo0000248

Khalaf, O., Resch, S., Dixsaut, L., Gorden, V., Glauser, L., & Gräff, J. (2018). Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science, 360(6394), 1239–1242. https://doi.org/10.1126/science.aas9875

Laing, P. A. F., Vervliet, B., Fullana, M. A., Savage, H. S., Davey, C. G., Felmingham, K. L., & Harrison, B. J. (2021). Characterizing human safety learning via Pavlovian conditioned inhibition. Behaviour Research and Therapy, 137, 103800. https://doi.org/10.1016/j.brat.2020.103800

Leahy, R. L. (2015). Emotional schema therapy, pg 10. The Guilford Press.

LeDoux, J. E., Moscarello, J., Sears, R., & Campese, V. (2017). The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Molecular Psychiatry, 22(1), 24–36. https://doi.org/10.1038/mp.2016.166

Lewis, M. M., & Loverich, T. M. (2019). Measuring Experiential Avoidance and Posttraumatic Stress in Families. Behavioral Sciences, 9(10), 104. https://doi.org/10.3390/bs9100104

Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis. Behaviour Research and Therapy, 43(11), 1391–1424. https://doi.org/10.1016/j.brat.2004.10.007

Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105(1), 3–46. https://doi.org/10.1037/0096-3445.105.1.3

Maier, S. F., & Seligman, M. E. P. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123(4), 349–367. https://doi.org/10.1037/rev0000033

Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience & Biobehavioral Reviews, 29(4–5), 829–841. https://doi.org/10.1016/j.neubiorev.2005.03.021

Manning, E. E., Bradfield, L. A., & Iordanova, M. D. (2021). Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience & Biobehavioral Reviews, 120, 526–536. https://doi.org/10.1016/j.neubiorev.2020.09.030

Marek, R., Jin, J., Goode, T. D., Giustino, T. F., Wang, Q., Acca, G. M., Holehonnur, R., Ploski, J. E., Fitzgerald, P. J., Lynagh, T., Lynch, J. W., Maren, S., & Sah, P. (2018). Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 21(3), 384–392. https://doi.org/10.1038/s41593-018-0073-9

Maswood, S., Barter, J. E., Watkins, L. R., & Maier, S. F. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783(1), 115–120. https://doi.org/10.1016/S0006-8993(97).01313-9

Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The Tie That Binds? Coherence Among Emotion Experience, Behavior, and Physiology. Emotion, 5(2), 175–190. https://doi.org/10.1037/1528-3542.5.2.175

McRae, K., & Gross, J. J. (2020). Emotion regulation. Emotion, 20(1), 1–9. https://doi.org/10.1037/emo0000703

McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7(3), 253–262. https://doi.org/10.1093/scan/nsq103

Meyer, H. C., Odriozola, P., Cohodes, E. M., Mandell, J. D., Li, A., Yang, R., Hall, B. S., Haberman, J. T., Zacharek, S. J., Liston, C., Lee, F. S., & Gee, D. G. (2019). Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proceedings of the National Academy of Sciences, 116(52), 26970–26979. https://doi.org/10.1073/pnas.1910481116

Meyer, H. C., Sangha, S., Radley, J. J., LaLumiere, R. T., & Baratta, M. V. (2021). Environmental certainty influences the neural systems regulating responses to threat and stress. Neuroscience & Biobehavioral Reviews, 131, 1037–1055. https://doi.org/10.1016/j.neubiorev.2021.10.014

Milad, M. R., & Quirk, G. J. (2012). Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 63(1), 129–151. https://doi.org/10.1146/annurev.psych.121208.131631

Mowrer, O. H. (1951). Two-factor learning theory: Summary and comment. Psychological Review, 58(5), 350–354. https://doi.org/10.1037/h0058956

Outhred, T., Das, P., Felmingham, K. L., Bryant, R. A., Nathan, P. J., Malhi, G. S., & Kemp, A. H. (2015). Facilitation of emotion regulation with a single dose of escitalopram: A randomized fMRI study. Psychiatry Research: Neuroimaging, 233(3), 451–457. https://doi.org/10.1016/j.pscychresns.2015.07.018

Overmier, J. B., & Leaf, R. C. (1965). Effects of discriminative Pavlovian fear conditioning upon previously or subsequently acquired avoidance responding. Journal of Comparative and Physiological Psychology, 60(2), 213–217. https://doi.org/10.1037/h0022340

Rogan, M. T., Leon, K. S., Perez, D. L., & Kandel, E. R. (2005). Distinct Neural Signatures for Safety and Danger in the Amygdala and Striatum of the Mouse. Neuron, 46(2), 309–320. https://doi.org/10.1016/j.neuron.2005.02.017

Sangha, S., Robinson, P. D., Greba, Q., Davies, D. A., & Howland, J. G. (2014). Alterations in Reward, Fear and Safety Cue Discrimination after Inactivation of the Rat Prelimbic and Infralimbic Cortices. Neuropsychopharmacology, 39(10), 2405–2413. https://doi.org/10.1038/npp.2014.89

Santini, E., Quirk, G. J., & Porter, J. T. (2008). Fear Conditioning and Extinction Differentially Modify the Intrinsic Excitability of Infralimbic Neurons. Journal of Neuroscience, 28(15), 4028–4036. https://doi.org/10.1523/JNEUROSCI.2623-07.2008

Sarlitto, M. C., Foilb, A. R., & Christianson, J. P. (2018). Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals. Neuroscience, 379, 350–358. https://doi.org/10.1016/j.neuroscience.2018.03.037

Schlund, M. W., Magee, S., & Hudgins, C. D. (2011). Human avoidance and approach learning: Evidence for overlapping neural systems and experiential avoidance modulation of avoidance neurocircuitry. Behavioural Brain Research, 225(2), 437–448. https://doi.org/10.1016/j.bbr.2011.07.054

Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1–9. https://doi.org/10.1037/h0024514

Seligman, M. E. P. (2006). Learned optimism: How to change your mind and your life (1st Vintage Books ed). Vintage Books.

Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10(10), 1329–1337. https://doi.org/10.1093/scan/nsv022

Silvers, J. A., & Guassi Moreira, J. F. (2019). Capacity and tendency: A neuroscientific framework for the study of emotion regulation. Neuroscience Letters, 693, 35–39. https://doi.org/10.1016/j.neulet.2017.09.017

Uusberg, A., Taxer, J. L., Yih, J., Uusberg, H., & Gross, J. J. (2019). Reappraising Reappraisal. Emotion Review, 11(4), 267–282. https://doi.org/10.1177/1754073919862617

Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27(2), 323–340. https://doi.org/10.1016/j.neuroimage.2005.01.054

Published

12/08/2024

How to Cite

SILVA, W. dos S. . Advances in the understanding of the neural basis of emotional regulation - A narrative review . Research, Society and Development, [S. l.], v. 13, n. 8, p. e4513846553, 2024. DOI: 10.33448/rsd-v13i8.46553. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46553. Acesso em: 5 jan. 2025.

Issue

Section

Review Article