Advances in the understanding of the neural basis of emotional regulation - A narrative review
DOI:
https://doi.org/10.33448/rsd-v13i8.46553Keywords:
Afect; Emotional regulation; Cognitive restructuring; Prefrontal cortex; Amygdala.Abstract
Emotional regulation is the use of conscious or unconscious processes that alter the nature, intensity, or duration of emotions. Dysfunctional emotions are a core part of the symptomatology of mental disorders. They are a major source of psychological distress and the main reason for seeking help in mental health. Emotional regulation is an integral part of different approaches in psychotherapy, and greater knowledge about the neural processes involved can enable the improvement of treatment strategies. The aim of this article is to present a narrative review of the literature that addresses advances in understanding the neural bases involved in emotion regulation strategies. Emotions result from the activation of several neural networks in a joint and integrated work. This network includes areas that play a prominent role, such as the thalamus, amygdala, insula, ventral striatum, medial prefrontal cortex, orbitofrontal cortex, somatosensory cortex, and anterior cingulate. These areas are also involved in emotional regulation either as a target or as agents of regulation. Reappraisal, which is the most studied strategy, in addition to decreasing amygdala activity, recruits prefrontal and parietal regions involved in non-affective cognitive control processes, such as response inhibition, task switching, and working memory. Research in this field with the new approaches of identifying distinct circuits by optogenetic and chemogenetic methods is quite promising. Deepening knowledge of these processes has the potential to provide a cross-theoretical and transdiagnostic point of convergence in psychotherapy.
References
Adolphs, R., Mlodinow, L., & Barrett, L. F. (2019). What is an emotion? Current Biology, 29(20), R1060–R1064. https://doi.org/10.1016/j.cub.2019.09.008
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004
Baratta, M. V., Lucero, T. R., Amat, J., Watkins, L. R., & Maier, S. F. (2008). Role of the ventral medial prefrontal cortex in mediating behavioral control-induced reduction of later conditioned fear. Learning & Memory, 15(2), 84–87. https://doi.org/10.1101/lm.800308
Baratta, M. V., & Maier, S. F. (2019). New tools for understanding coping and resilience. Neuroscience Letters, 693, 54–57. https://doi.org/10.1016/j.neulet.2017.09.049
Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60. https://doi.org/10.1038/s41398-018-0106-x
Bolles, R. C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77(1), 32–48. https://doi.org/10.1037/h0028589
Bouton, M. E., Maren, S., & McNally, G. P. (2021). Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 101(2), 611–681. https://doi.org/10.1152/physrev.00016.2020
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154
Cameron, G., Roche, B., Schlund, M. W., & Dymond, S. (2016). Learned, instructed and observed pathways to fear and avoidance. Journal of Behavior Therapy and Experimental Psychiatry, 50, 106–112. https://doi.org/10.1016/j.jbtep.2015.06.003
Catania, A. C., Matthews, B. A., & Shimoff, E. (1982). INSTRUCTED VERSUS SHAPED HUMAN VERBAL BEHAVIOR: INTERACTIONS WITH NONVERBAL RESPONDING. Journal of the Experimental Analysis of Behavior, 38(3), 233–248. https://doi.org/10.1901/jeab.1982.38-233
Christianson, J. P., Fernando, A. B. P., Kazama, A. M., Jovanovic, T., Ostroff, L. E., & Sangha, S. (2012). Inhibition of Fear by Learned Safety Signals: A Mini-Symposium Review. Journal of Neuroscience, 32(41), 14118–14124. https://doi.org/10.1523/JNEUROSCI.3340-12.2012
Christianson, J. P., Flyer-Adams, J. G., Drugan, R. C., Amat, J., Daut, R. A., Foilb, A. R., Watkins, L. R., & Maier, S. F. (2014). Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00348
Christianson, J. P., Jennings, J. H., Ragole, T., Flyer, J. G. N., Benison, A. M., Barth, D. S., Watkins, L. R., & Maier, S. F. (2011). Safety Signals Mitigate the Consequences of Uncontrollable Stress Via a Circuit Involving the Sensory Insular Cortex and Bed Nucleus of the Stria Terminalis. Biological Psychiatry, 70(5), 458–464. https://doi.org/10.1016/j.biopsych.2011.04.004
Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience & Biobehavioral Reviews, 48, 22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003
Cooper, S. E., Grillon, C., & Lissek, S. (2018). Impaired discriminative fear conditioning during later training trials differentiates generalized anxiety disorder, but not panic disorder, from healthy control participants. Comprehensive Psychiatry, 85, 84–93. https://doi.org/10.1016/j.comppsych.2018.07.001
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A Meta-analysis of Functional Neuroimaging Studies of Self- and Other Judgments Reveals a Spatial Gradient for Mentalizing in Medial Prefrontal Cortex. Journal of Cognitive Neuroscience, 24(8), 1742–1752. https://doi.org/10.1162/jocn_a_00233
Dixon, M. L., Moodie, C. A., Goldin, P. R., Farb, N., Heimberg, R. G., & Gross, J. J. (2020). Emotion Regulation in Social Anxiety Disorder: Reappraisal and Acceptance of Negative Self-beliefs. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(1), 119–129. https://doi.org/10.1016/j.bpsc.2019.07.009
Ellard, K. K., Barlow, D. H., Whitfield-Gabrieli, S., Gabrieli, J. D. E., & Deckersbach, T. (2017). Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Social Cognitive and Affective Neuroscience, 12(6), 1009–1021. https://doi.org/10.1093/scan/nsx025
Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimulation, 7(1), 105–112. https://doi.org/10.1016/j.brs.2013.08.006
Fernando, A. B. P., Urcelay, G. P., Mar, A. C., Dickinson, A., & Robbins, T. W. (2014). Safety signals as instrumental reinforcers during free-operant avoidance. Learning & Memory, 21(9), 488–497. https://doi.org/10.1101/lm.034603.114
Foa, E. B., & McLean, C. P. (2016). The Efficacy of Exposure Therapy for Anxiety-Related Disorders and Its Underlying Mechanisms: The Case of OCD and PTSD. Annual Review of Clinical Psychology, 12(1), 1–28. https://doi.org/10.1146/annurev-clinpsy-021815-093533
Gao, W., Biswal, B., Chen, S., Wu, X., & Yuan, J. (2021). Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. NeuroImage, 232, 117918. https://doi.org/10.1016/j.neuroimage.2021.117918
Garland, E. L., Farb, N. A., R. Goldin, P., & Fredrickson, B. L. (2015). Mindfulness Broadens Awareness and Builds Eudaimonic Meaning: A Process Model of Mindful Positive Emotion Regulation. Psychological Inquiry, 26(4), 293–314. https://doi.org/10.1080/1047840X.2015.1064294
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience: The biology of the mind (Fifth edition). W.W. Norton & Company.
Goldin, P. R., Manber, T., Hakimi, S., Canli, T., & Gross, J. J. (2009). Neural Bases of Social Anxiety Disorder: Emotional Reactivity and Cognitive Regulation During Social and Physical Threat. Archives of General Psychiatry, 66(2), 170. https://doi.org/10.1001/archgenpsychiatry.2008.525
Goode, T. D., & Maren, S. (2014). Animal Models of Fear Relapse. ILAR Journal, 55(2), 246–258. https://doi.org/10.1093/ilar/ilu008
Graeff, F. G., Guimarães, F. S., De Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54(1), 129–141. https://doi.org/10.1016/0091-3057(95).02135-3
Gross, J. J. (2015). Emotion Regulation: Current Status and Future Prospects. Psychological Inquiry, 26(1), 1–26. https://doi.org/10.1080/1047840X.2014.940781
Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501. https://doi.org/10.1038/nrn3524
Haaker, J., Lonsdorf, T. B., Schümann, D., Menz, M., Brassen, S., Bunzeck, N., Gamer, M., & Kalisch, R. (2015). Deficient inhibitory processing in trait anxiety: Evidence from context-dependent fear learning, extinction recall and renewal. Biological Psychology, 111, 65–72. https://doi.org/10.1016/j.biopsycho.2015.07.010
Hagihara, K. M., Bukalo, O., Zeller, M., Aksoy-Aksel, A., Karalis, N., Limoges, A., Rigg, T., Campbell, T., Mendez, A., Weinholtz, C., Mahn, M., Zweifel, L. S., Palmiter, R. D., Ehrlich, I., Lüthi, A., & Holmes, A. (2021). Intercalated amygdala clusters orchestrate a switch in fear state. Nature, 594(7863), 403–407. https://doi.org/10.1038/s41586-021-03593-1
Hayes, S. C., & Hofmann, S. G. (Orgs.). (2018). Process-based CBT: The science and core clinical competencies of cognitive behavioral therapy, pg 330-340. New Harbinger Publications, Inc.
Kaczkurkin, A. N., & Foa, E. B. (2015). Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues in Clinical Neuroscience, 17(3), 337–346.
Kalokerinos, E. K., Résibois, M., Verduyn, P., & Kuppens, P. (2017). The temporal deployment of emotion regulation strategies during negative emotional episodes. Emotion, 17(3), 450–458. https://doi.org/10.1037/emo0000248
Khalaf, O., Resch, S., Dixsaut, L., Gorden, V., Glauser, L., & Gräff, J. (2018). Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science, 360(6394), 1239–1242. https://doi.org/10.1126/science.aas9875
Laing, P. A. F., Vervliet, B., Fullana, M. A., Savage, H. S., Davey, C. G., Felmingham, K. L., & Harrison, B. J. (2021). Characterizing human safety learning via Pavlovian conditioned inhibition. Behaviour Research and Therapy, 137, 103800. https://doi.org/10.1016/j.brat.2020.103800
Leahy, R. L. (2015). Emotional schema therapy, pg 10. The Guilford Press.
LeDoux, J. E., Moscarello, J., Sears, R., & Campese, V. (2017). The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Molecular Psychiatry, 22(1), 24–36. https://doi.org/10.1038/mp.2016.166
Lewis, M. M., & Loverich, T. M. (2019). Measuring Experiential Avoidance and Posttraumatic Stress in Families. Behavioral Sciences, 9(10), 104. https://doi.org/10.3390/bs9100104
Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis. Behaviour Research and Therapy, 43(11), 1391–1424. https://doi.org/10.1016/j.brat.2004.10.007
Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105(1), 3–46. https://doi.org/10.1037/0096-3445.105.1.3
Maier, S. F., & Seligman, M. E. P. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123(4), 349–367. https://doi.org/10.1037/rev0000033
Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience & Biobehavioral Reviews, 29(4–5), 829–841. https://doi.org/10.1016/j.neubiorev.2005.03.021
Manning, E. E., Bradfield, L. A., & Iordanova, M. D. (2021). Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience & Biobehavioral Reviews, 120, 526–536. https://doi.org/10.1016/j.neubiorev.2020.09.030
Marek, R., Jin, J., Goode, T. D., Giustino, T. F., Wang, Q., Acca, G. M., Holehonnur, R., Ploski, J. E., Fitzgerald, P. J., Lynagh, T., Lynch, J. W., Maren, S., & Sah, P. (2018). Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 21(3), 384–392. https://doi.org/10.1038/s41593-018-0073-9
Maswood, S., Barter, J. E., Watkins, L. R., & Maier, S. F. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783(1), 115–120. https://doi.org/10.1016/S0006-8993(97).01313-9
Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The Tie That Binds? Coherence Among Emotion Experience, Behavior, and Physiology. Emotion, 5(2), 175–190. https://doi.org/10.1037/1528-3542.5.2.175
McRae, K., & Gross, J. J. (2020). Emotion regulation. Emotion, 20(1), 1–9. https://doi.org/10.1037/emo0000703
McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7(3), 253–262. https://doi.org/10.1093/scan/nsq103
Meyer, H. C., Odriozola, P., Cohodes, E. M., Mandell, J. D., Li, A., Yang, R., Hall, B. S., Haberman, J. T., Zacharek, S. J., Liston, C., Lee, F. S., & Gee, D. G. (2019). Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proceedings of the National Academy of Sciences, 116(52), 26970–26979. https://doi.org/10.1073/pnas.1910481116
Meyer, H. C., Sangha, S., Radley, J. J., LaLumiere, R. T., & Baratta, M. V. (2021). Environmental certainty influences the neural systems regulating responses to threat and stress. Neuroscience & Biobehavioral Reviews, 131, 1037–1055. https://doi.org/10.1016/j.neubiorev.2021.10.014
Milad, M. R., & Quirk, G. J. (2012). Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 63(1), 129–151. https://doi.org/10.1146/annurev.psych.121208.131631
Mowrer, O. H. (1951). Two-factor learning theory: Summary and comment. Psychological Review, 58(5), 350–354. https://doi.org/10.1037/h0058956
Outhred, T., Das, P., Felmingham, K. L., Bryant, R. A., Nathan, P. J., Malhi, G. S., & Kemp, A. H. (2015). Facilitation of emotion regulation with a single dose of escitalopram: A randomized fMRI study. Psychiatry Research: Neuroimaging, 233(3), 451–457. https://doi.org/10.1016/j.pscychresns.2015.07.018
Overmier, J. B., & Leaf, R. C. (1965). Effects of discriminative Pavlovian fear conditioning upon previously or subsequently acquired avoidance responding. Journal of Comparative and Physiological Psychology, 60(2), 213–217. https://doi.org/10.1037/h0022340
Rogan, M. T., Leon, K. S., Perez, D. L., & Kandel, E. R. (2005). Distinct Neural Signatures for Safety and Danger in the Amygdala and Striatum of the Mouse. Neuron, 46(2), 309–320. https://doi.org/10.1016/j.neuron.2005.02.017
Sangha, S., Robinson, P. D., Greba, Q., Davies, D. A., & Howland, J. G. (2014). Alterations in Reward, Fear and Safety Cue Discrimination after Inactivation of the Rat Prelimbic and Infralimbic Cortices. Neuropsychopharmacology, 39(10), 2405–2413. https://doi.org/10.1038/npp.2014.89
Santini, E., Quirk, G. J., & Porter, J. T. (2008). Fear Conditioning and Extinction Differentially Modify the Intrinsic Excitability of Infralimbic Neurons. Journal of Neuroscience, 28(15), 4028–4036. https://doi.org/10.1523/JNEUROSCI.2623-07.2008
Sarlitto, M. C., Foilb, A. R., & Christianson, J. P. (2018). Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals. Neuroscience, 379, 350–358. https://doi.org/10.1016/j.neuroscience.2018.03.037
Schlund, M. W., Magee, S., & Hudgins, C. D. (2011). Human avoidance and approach learning: Evidence for overlapping neural systems and experiential avoidance modulation of avoidance neurocircuitry. Behavioural Brain Research, 225(2), 437–448. https://doi.org/10.1016/j.bbr.2011.07.054
Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1–9. https://doi.org/10.1037/h0024514
Seligman, M. E. P. (2006). Learned optimism: How to change your mind and your life (1st Vintage Books ed). Vintage Books.
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10(10), 1329–1337. https://doi.org/10.1093/scan/nsv022
Silvers, J. A., & Guassi Moreira, J. F. (2019). Capacity and tendency: A neuroscientific framework for the study of emotion regulation. Neuroscience Letters, 693, 35–39. https://doi.org/10.1016/j.neulet.2017.09.017
Uusberg, A., Taxer, J. L., Yih, J., Uusberg, H., & Gross, J. J. (2019). Reappraising Reappraisal. Emotion Review, 11(4), 267–282. https://doi.org/10.1177/1754073919862617
Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27(2), 323–340. https://doi.org/10.1016/j.neuroimage.2005.01.054
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Welington dos Santos Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.