Avanços na compreensão das bases neurais da regulação emocional – Revisão narrativa
DOI:
https://doi.org/10.33448/rsd-v13i8.46553Palavras-chave:
Afeto; Regulação emocional; Terapia de reestruturação cognitiva; Córtex pré-frontal; Tonsila do cerebelo.Resumo
Regulação emocional é o uso de processos conscientes ou inconscientes que alteram a natureza, intensidade ou a duração das emoções. Emoções disfuncionais são parte nuclear da sintomatologia de transtornos mentais. Elas são uma grande fonte de sofrimento psíquico e o principal motivo de busca de ajuda em saúde mental. Regulação emocional é parte integrante de diferentes abordagens em psicoterapia e um maior conhecimento sobre os processos neurais envolvidos pode possibilitar o aperfeiçoamento de estratégias de tratamento. O presente artigo tem como objetivo apresentar uma revisão narrativa da literatura que aborda os avanços na compreensão das bases neurais envolvidas em estratégias de regulação emocional. As emoções resultam da ativação de várias redes neurais em um trabalho conjunto e integrado. Essa rede inclui áreas que têm um papel de destaque como tálamo, amígdala, ínsula, estriado ventral, córtex pré-frontal medial, orbito frontal, somatossensorial, e cingulado anterior. Estas áreas também estão envolvidas na regulação emocional seja como alvo ou como agentes de regulação. A reavaliação, que é a estratégia mais estudada, além de diminuir a atividade da amigdala, recruta regiões pré-frontais e parietais envolvidas em processos de controle cognitivo não afetivos, como inibição de resposta, troca de tarefas e memória de trabalho. A investigação neste campo com as novas abordagens de identificação de circuitos distintos por métodos optogenéticos e quimiogenéticos é bastante promissora. O aprofundamento do conhecimento destes processos tem o potencial de fornecer um ponto de convergência transteórico e transdiagnóstico em psicoterapia.
Referências
Adolphs, R., Mlodinow, L., & Barrett, L. F. (2019). What is an emotion? Current Biology, 29(20), R1060–R1064. https://doi.org/10.1016/j.cub.2019.09.008
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004
Baratta, M. V., Lucero, T. R., Amat, J., Watkins, L. R., & Maier, S. F. (2008). Role of the ventral medial prefrontal cortex in mediating behavioral control-induced reduction of later conditioned fear. Learning & Memory, 15(2), 84–87. https://doi.org/10.1101/lm.800308
Baratta, M. V., & Maier, S. F. (2019). New tools for understanding coping and resilience. Neuroscience Letters, 693, 54–57. https://doi.org/10.1016/j.neulet.2017.09.049
Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60. https://doi.org/10.1038/s41398-018-0106-x
Bolles, R. C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77(1), 32–48. https://doi.org/10.1037/h0028589
Bouton, M. E., Maren, S., & McNally, G. P. (2021). Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 101(2), 611–681. https://doi.org/10.1152/physrev.00016.2020
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154
Cameron, G., Roche, B., Schlund, M. W., & Dymond, S. (2016). Learned, instructed and observed pathways to fear and avoidance. Journal of Behavior Therapy and Experimental Psychiatry, 50, 106–112. https://doi.org/10.1016/j.jbtep.2015.06.003
Catania, A. C., Matthews, B. A., & Shimoff, E. (1982). INSTRUCTED VERSUS SHAPED HUMAN VERBAL BEHAVIOR: INTERACTIONS WITH NONVERBAL RESPONDING. Journal of the Experimental Analysis of Behavior, 38(3), 233–248. https://doi.org/10.1901/jeab.1982.38-233
Christianson, J. P., Fernando, A. B. P., Kazama, A. M., Jovanovic, T., Ostroff, L. E., & Sangha, S. (2012). Inhibition of Fear by Learned Safety Signals: A Mini-Symposium Review. Journal of Neuroscience, 32(41), 14118–14124. https://doi.org/10.1523/JNEUROSCI.3340-12.2012
Christianson, J. P., Flyer-Adams, J. G., Drugan, R. C., Amat, J., Daut, R. A., Foilb, A. R., Watkins, L. R., & Maier, S. F. (2014). Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00348
Christianson, J. P., Jennings, J. H., Ragole, T., Flyer, J. G. N., Benison, A. M., Barth, D. S., Watkins, L. R., & Maier, S. F. (2011). Safety Signals Mitigate the Consequences of Uncontrollable Stress Via a Circuit Involving the Sensory Insular Cortex and Bed Nucleus of the Stria Terminalis. Biological Psychiatry, 70(5), 458–464. https://doi.org/10.1016/j.biopsych.2011.04.004
Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience & Biobehavioral Reviews, 48, 22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003
Cooper, S. E., Grillon, C., & Lissek, S. (2018). Impaired discriminative fear conditioning during later training trials differentiates generalized anxiety disorder, but not panic disorder, from healthy control participants. Comprehensive Psychiatry, 85, 84–93. https://doi.org/10.1016/j.comppsych.2018.07.001
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A Meta-analysis of Functional Neuroimaging Studies of Self- and Other Judgments Reveals a Spatial Gradient for Mentalizing in Medial Prefrontal Cortex. Journal of Cognitive Neuroscience, 24(8), 1742–1752. https://doi.org/10.1162/jocn_a_00233
Dixon, M. L., Moodie, C. A., Goldin, P. R., Farb, N., Heimberg, R. G., & Gross, J. J. (2020). Emotion Regulation in Social Anxiety Disorder: Reappraisal and Acceptance of Negative Self-beliefs. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(1), 119–129. https://doi.org/10.1016/j.bpsc.2019.07.009
Ellard, K. K., Barlow, D. H., Whitfield-Gabrieli, S., Gabrieli, J. D. E., & Deckersbach, T. (2017). Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Social Cognitive and Affective Neuroscience, 12(6), 1009–1021. https://doi.org/10.1093/scan/nsx025
Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimulation, 7(1), 105–112. https://doi.org/10.1016/j.brs.2013.08.006
Fernando, A. B. P., Urcelay, G. P., Mar, A. C., Dickinson, A., & Robbins, T. W. (2014). Safety signals as instrumental reinforcers during free-operant avoidance. Learning & Memory, 21(9), 488–497. https://doi.org/10.1101/lm.034603.114
Foa, E. B., & McLean, C. P. (2016). The Efficacy of Exposure Therapy for Anxiety-Related Disorders and Its Underlying Mechanisms: The Case of OCD and PTSD. Annual Review of Clinical Psychology, 12(1), 1–28. https://doi.org/10.1146/annurev-clinpsy-021815-093533
Gao, W., Biswal, B., Chen, S., Wu, X., & Yuan, J. (2021). Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. NeuroImage, 232, 117918. https://doi.org/10.1016/j.neuroimage.2021.117918
Garland, E. L., Farb, N. A., R. Goldin, P., & Fredrickson, B. L. (2015). Mindfulness Broadens Awareness and Builds Eudaimonic Meaning: A Process Model of Mindful Positive Emotion Regulation. Psychological Inquiry, 26(4), 293–314. https://doi.org/10.1080/1047840X.2015.1064294
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience: The biology of the mind (Fifth edition). W.W. Norton & Company.
Goldin, P. R., Manber, T., Hakimi, S., Canli, T., & Gross, J. J. (2009). Neural Bases of Social Anxiety Disorder: Emotional Reactivity and Cognitive Regulation During Social and Physical Threat. Archives of General Psychiatry, 66(2), 170. https://doi.org/10.1001/archgenpsychiatry.2008.525
Goode, T. D., & Maren, S. (2014). Animal Models of Fear Relapse. ILAR Journal, 55(2), 246–258. https://doi.org/10.1093/ilar/ilu008
Graeff, F. G., Guimarães, F. S., De Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54(1), 129–141. https://doi.org/10.1016/0091-3057(95).02135-3
Gross, J. J. (2015). Emotion Regulation: Current Status and Future Prospects. Psychological Inquiry, 26(1), 1–26. https://doi.org/10.1080/1047840X.2014.940781
Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501. https://doi.org/10.1038/nrn3524
Haaker, J., Lonsdorf, T. B., Schümann, D., Menz, M., Brassen, S., Bunzeck, N., Gamer, M., & Kalisch, R. (2015). Deficient inhibitory processing in trait anxiety: Evidence from context-dependent fear learning, extinction recall and renewal. Biological Psychology, 111, 65–72. https://doi.org/10.1016/j.biopsycho.2015.07.010
Hagihara, K. M., Bukalo, O., Zeller, M., Aksoy-Aksel, A., Karalis, N., Limoges, A., Rigg, T., Campbell, T., Mendez, A., Weinholtz, C., Mahn, M., Zweifel, L. S., Palmiter, R. D., Ehrlich, I., Lüthi, A., & Holmes, A. (2021). Intercalated amygdala clusters orchestrate a switch in fear state. Nature, 594(7863), 403–407. https://doi.org/10.1038/s41586-021-03593-1
Hayes, S. C., & Hofmann, S. G. (Orgs.). (2018). Process-based CBT: The science and core clinical competencies of cognitive behavioral therapy, pg 330-340. New Harbinger Publications, Inc.
Kaczkurkin, A. N., & Foa, E. B. (2015). Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues in Clinical Neuroscience, 17(3), 337–346.
Kalokerinos, E. K., Résibois, M., Verduyn, P., & Kuppens, P. (2017). The temporal deployment of emotion regulation strategies during negative emotional episodes. Emotion, 17(3), 450–458. https://doi.org/10.1037/emo0000248
Khalaf, O., Resch, S., Dixsaut, L., Gorden, V., Glauser, L., & Gräff, J. (2018). Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science, 360(6394), 1239–1242. https://doi.org/10.1126/science.aas9875
Laing, P. A. F., Vervliet, B., Fullana, M. A., Savage, H. S., Davey, C. G., Felmingham, K. L., & Harrison, B. J. (2021). Characterizing human safety learning via Pavlovian conditioned inhibition. Behaviour Research and Therapy, 137, 103800. https://doi.org/10.1016/j.brat.2020.103800
Leahy, R. L. (2015). Emotional schema therapy, pg 10. The Guilford Press.
LeDoux, J. E., Moscarello, J., Sears, R., & Campese, V. (2017). The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Molecular Psychiatry, 22(1), 24–36. https://doi.org/10.1038/mp.2016.166
Lewis, M. M., & Loverich, T. M. (2019). Measuring Experiential Avoidance and Posttraumatic Stress in Families. Behavioral Sciences, 9(10), 104. https://doi.org/10.3390/bs9100104
Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis. Behaviour Research and Therapy, 43(11), 1391–1424. https://doi.org/10.1016/j.brat.2004.10.007
Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105(1), 3–46. https://doi.org/10.1037/0096-3445.105.1.3
Maier, S. F., & Seligman, M. E. P. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123(4), 349–367. https://doi.org/10.1037/rev0000033
Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience & Biobehavioral Reviews, 29(4–5), 829–841. https://doi.org/10.1016/j.neubiorev.2005.03.021
Manning, E. E., Bradfield, L. A., & Iordanova, M. D. (2021). Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience & Biobehavioral Reviews, 120, 526–536. https://doi.org/10.1016/j.neubiorev.2020.09.030
Marek, R., Jin, J., Goode, T. D., Giustino, T. F., Wang, Q., Acca, G. M., Holehonnur, R., Ploski, J. E., Fitzgerald, P. J., Lynagh, T., Lynch, J. W., Maren, S., & Sah, P. (2018). Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 21(3), 384–392. https://doi.org/10.1038/s41593-018-0073-9
Maswood, S., Barter, J. E., Watkins, L. R., & Maier, S. F. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783(1), 115–120. https://doi.org/10.1016/S0006-8993(97).01313-9
Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The Tie That Binds? Coherence Among Emotion Experience, Behavior, and Physiology. Emotion, 5(2), 175–190. https://doi.org/10.1037/1528-3542.5.2.175
McRae, K., & Gross, J. J. (2020). Emotion regulation. Emotion, 20(1), 1–9. https://doi.org/10.1037/emo0000703
McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7(3), 253–262. https://doi.org/10.1093/scan/nsq103
Meyer, H. C., Odriozola, P., Cohodes, E. M., Mandell, J. D., Li, A., Yang, R., Hall, B. S., Haberman, J. T., Zacharek, S. J., Liston, C., Lee, F. S., & Gee, D. G. (2019). Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proceedings of the National Academy of Sciences, 116(52), 26970–26979. https://doi.org/10.1073/pnas.1910481116
Meyer, H. C., Sangha, S., Radley, J. J., LaLumiere, R. T., & Baratta, M. V. (2021). Environmental certainty influences the neural systems regulating responses to threat and stress. Neuroscience & Biobehavioral Reviews, 131, 1037–1055. https://doi.org/10.1016/j.neubiorev.2021.10.014
Milad, M. R., & Quirk, G. J. (2012). Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 63(1), 129–151. https://doi.org/10.1146/annurev.psych.121208.131631
Mowrer, O. H. (1951). Two-factor learning theory: Summary and comment. Psychological Review, 58(5), 350–354. https://doi.org/10.1037/h0058956
Outhred, T., Das, P., Felmingham, K. L., Bryant, R. A., Nathan, P. J., Malhi, G. S., & Kemp, A. H. (2015). Facilitation of emotion regulation with a single dose of escitalopram: A randomized fMRI study. Psychiatry Research: Neuroimaging, 233(3), 451–457. https://doi.org/10.1016/j.pscychresns.2015.07.018
Overmier, J. B., & Leaf, R. C. (1965). Effects of discriminative Pavlovian fear conditioning upon previously or subsequently acquired avoidance responding. Journal of Comparative and Physiological Psychology, 60(2), 213–217. https://doi.org/10.1037/h0022340
Rogan, M. T., Leon, K. S., Perez, D. L., & Kandel, E. R. (2005). Distinct Neural Signatures for Safety and Danger in the Amygdala and Striatum of the Mouse. Neuron, 46(2), 309–320. https://doi.org/10.1016/j.neuron.2005.02.017
Sangha, S., Robinson, P. D., Greba, Q., Davies, D. A., & Howland, J. G. (2014). Alterations in Reward, Fear and Safety Cue Discrimination after Inactivation of the Rat Prelimbic and Infralimbic Cortices. Neuropsychopharmacology, 39(10), 2405–2413. https://doi.org/10.1038/npp.2014.89
Santini, E., Quirk, G. J., & Porter, J. T. (2008). Fear Conditioning and Extinction Differentially Modify the Intrinsic Excitability of Infralimbic Neurons. Journal of Neuroscience, 28(15), 4028–4036. https://doi.org/10.1523/JNEUROSCI.2623-07.2008
Sarlitto, M. C., Foilb, A. R., & Christianson, J. P. (2018). Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals. Neuroscience, 379, 350–358. https://doi.org/10.1016/j.neuroscience.2018.03.037
Schlund, M. W., Magee, S., & Hudgins, C. D. (2011). Human avoidance and approach learning: Evidence for overlapping neural systems and experiential avoidance modulation of avoidance neurocircuitry. Behavioural Brain Research, 225(2), 437–448. https://doi.org/10.1016/j.bbr.2011.07.054
Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1–9. https://doi.org/10.1037/h0024514
Seligman, M. E. P. (2006). Learned optimism: How to change your mind and your life (1st Vintage Books ed). Vintage Books.
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10(10), 1329–1337. https://doi.org/10.1093/scan/nsv022
Silvers, J. A., & Guassi Moreira, J. F. (2019). Capacity and tendency: A neuroscientific framework for the study of emotion regulation. Neuroscience Letters, 693, 35–39. https://doi.org/10.1016/j.neulet.2017.09.017
Uusberg, A., Taxer, J. L., Yih, J., Uusberg, H., & Gross, J. J. (2019). Reappraising Reappraisal. Emotion Review, 11(4), 267–282. https://doi.org/10.1177/1754073919862617
Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27(2), 323–340. https://doi.org/10.1016/j.neuroimage.2005.01.054
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Welington dos Santos Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.