Influence of storage conditions on the stability of ozonized vegetable oils
DOI:
https://doi.org/10.33448/rsd-v13i12.47796Keywords:
Ozonized oils; Ozonides; Peroxide value; Infrared; Storage; Oxidative stability.Abstract
Ozonation of polyunsaturated vegetable oils imparts antimicrobial, wound healing, and antioxidant properties, expanding their potential applications in pharmaceutical, cosmetic, and food industries. These oils have been increasingly used as natural alternatives in wound treatments due to the formation of reactive oxygen species, such as peroxides, hydroperoxides, and ozonides, during the ozonation process. This study aimed to evaluate the ozonation levels of six polyunsaturated vegetable oils (sunflower, coconut, copaiba, grape seed, olive, and rosehip), using peroxide value as an indicator. Among these, sunflower oil exhibited the highest peroxide value and was selected for detailed monitoring of the ozonation process, including infrared spectroscopy and peroxide value analyses. To assess the effects of storage, the ozonized oil was stored under three conditions: freezer (-18°C), refrigerator (4°C), and room temperature (25°C), with evaluations every 30 days over 180 days. Results demonstrated that room temperature significantly reduced the peroxide value, compromising oxidative stability, while freezer and refrigerator storage better preserved reactive species, such as peroxides, hydroperoxides, and ozonides, with the freezer offering the highest level of conservation. These storage conditions are essential to maintain the antimicrobial and wound-healing potential of ozonized oils, particularly for therapeutic applications. This study highlights the importance of adequate storage strategies to ensure the efficacy and longevity of ozonized oils, contributing to the development of high-value-added products.
References
Azarpazhooh, A., & Limeback, H. (2008). The application of ozone in dentistry: A systematic review of literature. Journal of Dentistry, 36(2), 104–116. https://doi.org/10.1016/j.jdent.2007.11.008
Braidy, N., Izadi, M., Sureda, A., Jonaidi-Jafari, N., Banki, A., Nabavi, S. F., et al. (2018). Therapeutic relevance of ozone therapy in degenerative diseases: focus on diabetes and spinal pain. Journal of Cellular Physiology, 233(4), 2705–2714. https://doi.org/10.1002/jcp.26044
Criegee, R. (1975). Mechanism of ozonolysis. Angewandte Chemie International Edition, 14, 745–752.
Díaz-Gómez, M. F., Ledea Lozano, O. E., Gómez Regüeiferio, M., Garcés Mancheño, R., Barragán Alaiz, M. S., & Martínez Force, E. (2009). Estudio comparativo de la ozonización de aceites de girasol modificados genéticamente y sin modificar. Química Nova, 32(9), 2467–2472.
Díaz, M. F., Hernández, R., Martínez, G., Vidal, G., Gómez, M., Fernández, H., & Garcés, R. (2006b). Comparative study of ozonized olive oil and ozonized sunflower oil. Journal of the Brazilian Chemical Society, 17(2), 403–407. https://doi.org/10.1590/S0103-50532006000200026.
Díaz, M. F., Núñez, N., Quincose, D., & Díaz, W., Hernández, F. (2005). Study of three systems of ozonized coconut oil. Ozone: Science & Engineering, 27(2), 153–157. https://doi.org/10.1080/01919510590925275.
European Patent Office. (2009). Gel formulation containing ozonated olive oil. European Patent No. EP2025740A1. European Patent Office.
Graiver, D., Patil, M., & Narayan, R. (2010). Recent advances in ozonation of vegetable oils. Recent Patents on Materials Science, 3(3), 203-218.
Guzel-Seydima, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT - Food Science and Technology, 37(4), 453–460.
Jardines, D., Correa, T., Ledea, O., Zamora, Z., Rosado, A., & Moleiro, J. (2003). Gas chromatography–mass spectrometry profile of urinary organic acids of Wistar rats orally treated with ozonized unsaturated triglycerides and ozonized sunflower oil. Journal of Chromatography B, 783(1), 517–525.
Justia Patents. (2022). Method for the production of an ozonized olive oil. U.S. Patent No. 11,236,289. U.S. Patent and Trademark Office.
Lillo, E., Cordisco, M., Trotta, A., Greco, G., Carbonari, A., Rizzo, A., Sciorsci, R. L., & Corrente, M. (2023). Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico-vaginal mucus of cows with acute metritis. Theriogenology, 196, 25–30.
Lim, Y., Lee, H., Woodby, B., & Valacchi, G. (2019). Ozonated Oils and Cutaneous Wound Healing. Current pharmaceutical design, 25(20), 2264–2278. https://doi.org/10.2174/1381612825666190702100504
Lu, J.-Y., Wang, X.-Q., Fu, Z.-B., Gao, L.-H., Mannam, H., Xiang, Y.-P., Joo, Y. Y., Zeng, J.-R., Wang, D., & Paller, A. S. (2023). Topical ozone accelerates diabetic wound healing by promoting re-epithelialization through the activation of IGF1R–EGFR signaling. Journal of Investigative Dermatology, 143(12), 2507-2514.e6. https://doi.org/10.1016/j.jid.2023.05.015
Moureu, S., Violleau, F., Haimoud-Lekhal, D. A., & Calmon, A. (2015). Ozonation of sunflower oils: Impact of experimental conditions on the composition and the antibacterial activity of ozonized oils. Chemistry and Physics of Lipids, 186, 79-85. https://doi.org/10.1016/j.chemphyslip.2015.01.004
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book]. Santa Maria, RS: Ed. UAB/NTE/UFSM. ISBN 978-85-8341-204-5. Disponível em: https://repositorio.ufsm.br/handle/1/15824
Puxeddu, S., Scano, A., Scorciapino, M. A., Delogu, I., Vascellari, S., Ennas, G., Manzin, A., & Angius, F. (2024). Physico-chemical investigation and antimicrobial efficacy of ozonated oils: The case study of commercial ozonated olive and sunflower seed refined oils. Molecules, 29(679)
Russian Patent Office. (2017). Method for ozonizing vegetable oils. Russian Patent No. RU2630312C1. Russian Patent Office.
Sadowska, J., Johansson, B., Johannessen, E., Friman, R., Broniarz-Press, L., & Rosenholm, J. B. (2008). Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods. Chemistry and Physics of Lipids, 151(2), 85–91. https://doi.org/10.1016/j.chemphyslip.2007.10.004
Sciorsci, R. L., Lillo, E., Occhiogrosso, L., & Rizzo, A. (2020). Ozone therapy in veterinary medicine: a review. Research in Veterinary Science, 130, 240–246. https://doi.org/10.1016/j.rvsc.2020.03.026
Soriano, N. U., Jr., Migo, V. P., & Matsumura, M. (2003). Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR. Chemistry and Physics of Lipids, 126(1), 133–140. https://doi.org/10.1016/j.chemphyslip.2003.07.001
US Patent Office. (2006). Method of ozonizing oils in liquid phase. U.S. Patent No. 20060074129A1. U.S. Patent and Trademark Office.
Valacchi, G., Lim, Y., Belmonte, G., Miracco, C., Zanardi, I., Bocci, V., & Travagli, V. (2011). Ozonated sesame oil enhances cutaneous wound healing in SKH1 mice. Wound Repair and Regeneration, 19(1), 107–115. https://doi.org/10.1111/j.1524-475X.2010.00649.x.
Valacchi, G., Zanardi, I., Lim, Y., Belmonte, G., Miracco, C., Sticozzi, C., Bocci, V., & Travagli, V. (2013). Ozonated oils as functional dermatological matrices: effects on the wound healing process using SKH1 mice. International Journal of Pharmaceutics, 458(1), 65–73. https://doi.org/10.1016/j.ijpharm.2013.09.039.
World Intellectual Property Organization. (2008). Formulations of ozonized oils for antimicrobial treatments. World Patent No. WO2008050157A2. World Intellectual Property Organization.
Xiao, W., Tang, H., Wu, M., Liao, Y., Li, K., Li, L., & Xu, X. (2017). Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Bioscience Reports, 37, BSR20170658. https://doi.org/10.1042/BSR20170658
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Milena Duarte Lima; Romário Silva Ramos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.