Plant growth and quality of sweet grape tomato fruits under the effects of nitrogen doses and water replenishment

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4784

Keywords:

Solanum lycopersicum; Nitrogen nutrition; Irrigation blades.

Abstract

Tomato fruits are excellent sources of antioxidants and nutrients for the human diet, tomato consumption has a great impact on nutrition and medicinal aspects. The objective of this study was to identify the irrigation water replacements and nitrogen doses that provide greater plant growth and productivity of sweet grape tomato fruits. The experimental design adopted was in randomized blocks, in a factorial scheme (4 x 4), with four replications. The factors were four nitrogen doses (50, 75, 100 and 125% of the recommended dose) and four water replacements (25, 50, 75 and 100% of the field capacity). The variables of plant height, stem diameter, leaf area and the SPAD index (Soil Plant Analysis Development) of the plants were evaluated, as well as the dry mass, soluble solids content and pH of the tomato fruits. Water replacement and nitrogen application significantly increase tomato plant growth and fruit quality. The maximum stem diameter and maximum leaf area were verified in water replenishment of 63.40 and 100%, respectively. The doses of N that favored the maximum dry mass were verified in the doses of 84.04%; 78.57% and 97.47% for water replenishment of 25%, 50% and 100% of field capacity. The nitrogen dose that favored a greater accumulation of dry matter in tomato fruits was at 84.04%; 78.57% and 97.47%, with a maximum dry matter of 9.45; 11.28 and 10.92 g, respectively. The application of 100% water replacement and 100% nitrogen dose influence the growth, development and quality of tomato fruits, promoting increases in crop productivity.

References

Adigun, J. A.; Daramola, O. S.; Adeyemi, O. U.; Olorunmaiye, P. M.; & Osipitan, O. A. (2018). Nitrogen and weed management in transplanted tomato in the Nigerian forest-savanna transition zone. Annals of Agrarian Science, 16(3), 281-285.

Agbana, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; & Timm, L. C. (2017). Effects of defict irrigation and biochar addition on the growth, yield and quality of tomato. Scientia Horticulturae, 222, 90-101.

Alvarenga, M.A.R. Cultura do Tomateiro. Editora UFLA, 2000, 91.

Alves, G. K. E. B.; Simões, A. C.; Ferreira, R. L. F.; & Neto, S. E. A. (2016). Produtividade de tomate orgânico cultivado em diferentes ambientes e níveis de insumos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11(4), 44-50.

Andrade, A. R.; Noronha, S. P.; Azevedo, P. R.; Silva, P. R. A.; & Santos, R. C. (2017). Fertirrigação no cultivo de quatro cultivares de tomate (Lycopersicum sculentum) irrigado por gotejamento. Applied Research & Agrotechnology, 10, 7-21.

Andrade, A.R.S.; Noronha, S.P.; Azevedo, P.R.; Silva, P. R. A.; & Santos, R. C. (2017). Brazilian Journal of Applied Technology for Agricultural Science, 10(2), 07-21.

Badra, M. A.; Abou-Hussein, S. D. & El-Tohamy, W. A. (2016). Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agricultural Water Management, 169, 90-97.

Benard, C. H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; & Genard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 57, 4112-4123.

Djurovic, N.; Cosic, M.; Stricevic, R.; Savic, S.; & Domazet, M. (2016). Effect of irrigation regime and appliacation of kaolin on yield, quality and water use efficiency of tomato. Scientia Horticulturae, 201, 71-278.

Du, Y.; Cao, H.; Liu, S.; Gu, X.; & Cao, Y. (2017). Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. Journal of Integrative Agriculture, 16, 1153-1161.

Farneselli, M.; Benincasa, P.; Tosti, G.; Simonne, E.; Guiducci, M.; & Tei, F. (2015). High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agricultural Water Management, 154, 52–58.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, 1039-1042, 2011.

Ferreira, E. D.; Viol, M. A.; Carvalho, J. A.; Gontijo, M. L.; Rezende, F. C.; & Lima, E. M. C. (2019). Tomate sweet grape cultivado com diferentes lâminas e frequências de irrigação em ambiente protegido. Revista Brasileira de Agricultura Irrigada, 13(3), 3402 – 3411.

Ferreira, M. M. M.; Ferreira, G. B.; Fontes, P. C. R.; & Dantas, J. P. (2006). Índice spad e teor de clorofila no limbo foliar do tomate em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Revista Ceres, Viçosa, 53, 83-92.

Fullana-Pericàs, M.; Conesa, M. À.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; & Galmés, J. (2019). Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agricultural Water Management, 223, 105722.

Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; & Demir, A. O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Horticulture, Environment, and Biotechnology, 55(2), 103-114.

Li, Q.; Wei, M.; Li, Y.; Feng, G.; Wang, Y.; Li, S.; & Zhang, D. (2019). Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agricultural Water Management, 226, 105818.

Luz, J. M. Q; Bittar, C. A.; Oliveira, R. C.; Nascimento, A. R.; & Nogueira, A. P. O. (2016). Desempenho e divergência genética de genótipos de tomate para processamento industrial. Horticultura. Brasileira, 34(4), 483-490.

Moura, A. P.; Michereff Filho, M.; Guimarães, J. A.; & Liz, R. S. (2014). Manejo integrado de pragas do tomateiro para processamento industrial. Ministério da Agricultura, pecuária e Abastecimento. Circular técnica. Embrapa, Brasília, 1-24.

Novais, R. F.; Neves, J. E. L.; & Barros, N. F. (1991). Teores de nutrientes a serem adicionados ou tingidos em ensaios de vaso In: Oliveira, A.J.; Garrido, W.E.; Araújo, J.D.; Lourenço, S. Métodos de pesquisa em fertilidade do solo, 195-195.

Pascale, S.; Maggio, A.; Orsini, F.; & Barbieri, G. (2016). Cultivar, soil type, nitrogen source and irrigation regime as quality determinants of organically grown tomatoes. Scientia horticulturae, 199, 88-94.

Reis, L. S.; Azevedo, C. A.; Albuquerque, A. W.; & Junior, J. F. (2013). Índice de área foliar e produtividade do tomate sob condições de ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 386-391.

Santiago, E. J. P.; Gertrudes, M. O.; Leitão, M. M. V. B. R.; Rocha, R. C.; & Pereira, A. V. A. (2018). Qualidade do tomate cereja cultivado sob lâminas de irrigação em ambiente protegido e campo aberto. Revista Agrometeoros, 26(1), 213-221.

Silva, E. C.; Alvarenga, P. P. M.; & Maciel, G. M. (2013). Avaliações físico-químicas de frutos de tomateiro em função de doses de potássio e nitrogênio. Bioscience Journal, 29, 1788-1795.

Silva, J. A.; Dutra, A. F.; Cavalcanti, N. M. S.; Melo, A. S.; Silva, F. G.; & Silva, J. M. (2014). Aspectos agronômicos do tomateiro “Caline Ipa 6” cultivado sob regimes hídricos em área do semiárido. Revista Agro@mbiente On-line, 8, 336-344.

Silva, J. M. D.; Ferreira, R. S.; Melo, A. S. D.; Suassuna, J. F.; Dutra, A. F.; & Gomes, J. P. (2013). Cultivo do tomateiro em ambiente protegido sob diferentes taxas de reposição da evapotranspiração. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(1), 40-46.

Taiz, L.; Zeiger, E.; Moller, I. M.; & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre-RS: Editora Artmed, 121.

Vieira, I. G.; Nobre, R. G.; Dias, A. S.; & Pinheiro, F. W. (2016). Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 55-61.

Viol, M. A.; Carvalho, J. A; Lima, E. M. C.; Rezende, F. C.; Mattos, R. W. P. & Rodrigues, J. L. M. (2017). Déficit hídrico e produção do tomate cultivado em ambiente protegido. Revista Brasileira de Agricultura Irrigada, 11(1), 1244-1253.

Wang, X.; & Xing, Y. (2017). Effect of irrigation and fertilization on the distribution and fate of nitrogen in greenhouse tomato (Solanum lycopersicum L.). Pakistan Journal of Botany, (49)1, 77-83.

Published

16/06/2020

How to Cite

PAIXÃO, C. F. C. da; VIDAL, V. M.; GOMES, L. F.; LIRA, L. C. . de; SOARES, J. A. B.; MORAES, G. S.; FERNANDES, L. O.; BATISTA, M. C.; CUNHA, F. N.; SANTOS, L. N. S. dos; TEIXEIRA, M. B.; SOARES, F. A. L. Plant growth and quality of sweet grape tomato fruits under the effects of nitrogen doses and water replenishment. Research, Society and Development, [S. l.], v. 9, n. 7, p. e917974784, 2020. DOI: 10.33448/rsd-v9i7.4784. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4784. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences