Radiotrophic fungi and their use as bioremediation agents of areas affected by radiation and as protective agents
DOI:
https://doi.org/10.33448/rsd-v14i1.47965Keywords:
Radiotrophic fungi; Nuclear Waste; Bioremediation.Abstract
Nuclear waste, from nuclear fuel and nuclear accidents, represents a great risk to the environment and human beings, causing several problems such as malformation, and cancer, it can turn areas uninhabitable, causing changes in the fauna and flora of entire areas. In the search for a more effective way to deal with such contaminants, it is proposed the use of radiotrophic fungi, such as those found inhabiting the reactor of Chernobyl in Ukraine, the poles, and the international space station, due to their high resistance to these contaminants, the power of absorption of ionizing radiation and the deposition of radioisotopes in their cell walls, making possible the removal of them from the environment in which they are found, as well as the consumption of organic matter, such as the graphite present in the reactor number 4 of Chernobyl. Another property to be explored is the protective use of these organisms to reduce the incidence of ionizing radiation in areas of interest and protect human beings. Therefore, this research aimed to study the mechanisms of action and the effectiveness of these bioremediation agents. The research consisted of a bibliographical review, using database resources and the library collection of the University of Passo Fundo, totaling 56 materials (articles and books), after compilation and evaluation, it can be concluded that radiotrophic fungi are promising as bioremediation agents, with potential for protecting equipment, human beings and as biosensors to detect the presence of ionizing radiation.
References
Aquino, A. R., & Vieira, M. M. F. (2002). Lixo nuclear: Dois pesos e duas medidas [Nuclear waste: two weights and two measures]. Vox Scientiae, 2(7). https://repositorio.ipen.br/bitstreams/88c71922-3a4b-4b37-9097-ba896e446a74/download.
Aquino, K. A. da S., & Aquino, F. da S. (2012). Radioatividade e meio ambiente: Os átomos instáveis da natureza [Radioactivity and the environment: nature’s unstable atoms]. Editora SBQ.
Atkins, P., & Jones, L. (2010). Chemical principles: The quest for insight (5th ed.). W. H. Freeman and Company.
Auyezov, O. & Balmforth, R. (2011). Special report: In Chernobyl, a disaster persists. Reuters. https://www.reuters.com/article/world/special-report-in-chernobyl-a-disaster-persists-idUSTRE72E42C/.
Boháč, J., Krivolutskii, D. A., & Antonova, T. B. (1990). The role of fungi in the biogenous migration of elements and in the accumulation of radionuclides. Agriculture, Ecosystems & Environment, 28(1–4), 31–34. https://doi.org/10.1016/0167-8809(90)90008-2.
Bourguignon, D., & Scholz, N. (2016). Chernobyl 30 years on: Environmental and health effects (Briefing). European Parliamentary Research Service. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2016)581972.
Butler, M. J., & Day, A. W. (1998). Fungal melanins: A review. Canadian Journal of Microbiology, 44(12), 1115–1136. https://doi.org/10.1139/w98-119.
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.
Chowdhary, A., Perfect, J., & de Hoog, G. S. (2014). Black Molds and Melanized Yeasts Pathogenic to Humans. Cold Spring Harbor perspectives in medicine, 5(8). https://doi.org/10.1101/cshperspect.a019570.
Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11(6), 525-531. https://doi.org/10.1016/j.mib.2008.09.013.
Dadachova, E., Bryan, R. A., Howell, R. C., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment cell & melanoma research, 21(2), 192–199. https://doi.org/10.1111/j.1755-148X.2007.00430.x.
Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one, 2(5). https://doi.org/10.1371/journal.pone.0000457.
Eisenman, H. C., & Casadevall, A. (2012). Synthesis and assembly of fungal melanin. Applied microbiology and biotechnology, 93(3), 931–940. https://doi.org/10.1007/s00253-011-3777-2.
Enochs, W. S., Nilges, M. J., & Swartz, H. M. (1993). A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment cell research, 6(2), 91–99. https://doi.org/10.1111/j.1600-0749.1993.tb00587.x.
Fernandes, H. M. (2000). Radioatividade natural [Natural radioactivity]. Ciência Hoje, 28(166), 36-42.
Haselwandter, K., & Berreck, M. (1994). Accumulation of radionuclides in fungi. In G. Winkelmann (Ed.), Metal ions in fungi (pp. 259–278). CRC Press. https://doi.org/10.1201/9781003067221-9.
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M. H., Grinspoon, D., Bullock, M. A., Posner, A., … MSL Science Team (2014). Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science (New York, N.Y.), 343(6169), 1244797. https://doi.org/10.1126/science.1244797.
Helebrant, J. (2017). Penetrating power of different types of radiation: Alpha, beta, gamma, and neutrons [Image]. OpenClipart. https://openclipart.org/detail/274074/penetrating-power-of-different-types-of-radiation-alpha-beta-gamma-and-neutrons.
Hill H. Z. (1992). The function of melanin or six blind people examine an elephant. BioEssays : news and reviews in molecular, cellular and developmental biology, 14(1), 49–56. https://doi.org/10.1002/bies.950140111.
International Energy Agency. (2019). Nuclear power in a clean energy system. International Energy Agency. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system.
Jacobson E. S. (2000). Pathogenic roles for fungal melanins. Clinical microbiology reviews, 13(4), 708–717. https://doi.org/10.1128/CMR.13.4.708.
Jacobson, E. S., & Ikeda, R. (2005). Effect of melanization upon porosity of the cryptococcal cell wall. Medical mycology, 43(4), 327–333. https://doi.org/10.1080/13693780412331271081.
Jørgensen K. S. (2007). In situ bioremediation. Advances in applied microbiology, 61, 285–305. https://doi.org/10.1016/S0065-2164(06)61008-3.
Koch, S. M., Freidank-Pohl, C., Siontas, O., Cortesao, M., Mota, A., Runzheimer, K., Jung, S., Rebrosova, K., Siler, M., Moeller, R., & Meyer, V. (2023). Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1233740
Lamia, K., & Neji, G. (2010). Aspergillus niger is able to decolourize sepia ink contained in saline industrial wastewaters. Desalination and Water Treatment, 20(1-3), 144-153.
Langfelder, K., Streibel, M., Jahn, B., Haase, G., & Brakhage, A. A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal genetics and biology : FG & B, 38(2), 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1.
Malo, M. E., Frank, C., & Dadachova, E. (2020). Radioadapted Wangiella dermatitidis senses radiation in its environment in a melanin-dependent fashion. Fungal biology, 124(5), 368–375. https://doi.org/10.1016/j.funbio.2019.10.011.
Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.
Mohamed, W. S., Abbas, Y. M. M., Ammar, A. A. A., & et al. (2023). Effect of fungal isolates from different samples upon radionuclide behavior and environmental hazard indices during bioleaching process in Gabal Um Hamd, Um Bogma area, southwestern Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 332(5), 3919–3932. https://doi.org/10.1007/s10967-023-09090-1
Moresi, S. (2003). Metodologia da pesquisa [Research methodology]. Universidade Federal do Espírito Santo. http://www.inf.ufes.br/~pdcosta/ensino/2010-2-metodologia-de-pesquisa/MetodologiaPesquisa-Moresi2003.pdf.
Novikova, N. D., Polikarpov, N. A., Deshevaia, E. A., Svistunova, I.uV., & Grigor'ev, A. I. (2007). [Results of the experiment with extended exposure of microorganisms in open space]. Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine, 41(2), 14–20.
Nuclear Energy Agency. (2002). Chernobyl: Assessment of radiological and health impacts – 2002 update of Chernobyl: Ten years on. OECD-NEA. https://www.oecd-nea.org/jcms/pl_13598/chernobyl-assessment-of-radiological-and-health-impacts-2002.
Nuclear Energy Agency. (2009). Considering timescales in the post-closure safety of geological disposal of radioactive waste. OECD Publishing. https://www.oecd-nea.org/jcms/pl_14446/considering-timescales-in-the-post-closure-safety-of-geological-disposal-of-radioactive-waste.
Onishi, Y. (2014). Fukushima and Chernobyl nuclear accidents' environmental assessments and U.S. Hanford site’s waste management. Procedia IUTAM, 10, 372–381. https://doi.org/10.1016/j.piutam.2014.01.032.
Paatero, J., Hämeri, K., Jaakkola, T., Jantunen, M., Koivukoski, J., & Saxén, R. (2010). Airborne and deposited radioactivity from the Chernobyl accident: A review of investigations in Finland. Boreal Environment Research, 15, 19–33. http://www.borenv.net/BER/pdfs/ber15/ber15-019.pdf.
Pacelli, C., Bryan, R. A., Onofri, S., Selbmann, L., Shuryak, I., & Dadachova, E. (2017). Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environmental microbiology, 19(4), 1612–1624. https://doi.org/10.1111/1462-2920.13681.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T., & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21(3), 159-167.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.
Saldaña, M., Jeldres, M., Galleguillos Madrid, F. M., Gallegos, S., Salazar, I., Robles, P., & Toro, N. (2023). Bioleaching Modeling-A Review. Materials (Basel, Switzerland), 16(10), 3812. https://doi.org/10.3390/ma16103812
Schweitzer, A. D., Howell, R. C., Jiang, Z., Bryan, R. A., Gerfen, G., Chen, C. C., Mah, D., Cahill, S., Casadevall, A., & Dadachova, E. (2009). Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PloS one, 4(9). https://doi.org/10.1371/journal.pone.0007229.
Shunk, G. K., Gomez, X. R., Kern, C., & Averesch, N. J. H. (2020). Growth of the radiotrophic fungus Cladosporium sphaerospermum aboard the International Space Station and effects of ionizing radiation. bioRxiv. https://doi.org/10.1101/2020.07.16.205534.
Thibeault, S., Fay, C., Lowther, S., Earle, K., Sauti, G., Kang, J., Park, C. & McMullen, A. (2012). Radiation shielding materials containing hydrogen, boron, and nitrogen: Systematic computational and experimental study—Phase I (NIAC Final Report). NASA. https://www.nasa.gov/general/radiation-shielding-materials-containing-hydrogen-boron-and-nitrogen-systematic-computational-and-experimental-study/.
Thomas, G. A., & Symonds, P. (2016). Radiation exposure and health effects – is it time to reassess the real consequences? Clinical Oncology, 28(4), 231-236. https://doi.org/10.1016/j.clon.2016.01.004.
Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (13th ed.). Pearson.
Turick, C. E., Knox, A. S., Leverette, C. L. & Kritzas, Y. G. (2008). In situ uranium stabilization by microbial metabolites. Journal of environmental radioactivity, 99(6), 890–899. https://doi.org/10.1016/j.jenvrad.2007.11.020.
U.S. Nuclear Regulatory Commission. (2021). Personal annual radiation dose calculator. https://www.nrc.gov/about-nrc/radiation/around-us/calculator.html.
U.S. Nuclear Regulatory Commission. (2024). Radioactive waste: Production, storage, disposal. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html.
UKEssays. (2018). Effects of Nuclear Radiation on the Environment. https://www.ukessays.com/essays/biology/effects-of-nuclear-radiation-on-the-environment-biology-essay.php?vref=1.
Wang, Y., Aisen, P. & Casadevall, A. (1996). Melanin, melanin "ghosts," and melanin composition in Cryptococcus neoformans. Infection and immunity, 64 (7), 2420–4. https://doi.org/10.1128/iai.64.7.2420-2424.1996.
Washington M. A. (2014). Melanized fungi and military medical operations in the nuclear environment. Military medicine, 179(11), 1181–1183. https://doi.org/10.7205/MILMED-D-14-00152.
White, C., & Gadd, G. M. (1990). Biosorption of radionuclides by fungal biomass. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986), 49(4), 331–343. https://doi.org/10.1002/jctb.280490406
Wikimedia Commons. (2024). 1,8-Dihydroxynaphthalene [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:1,8-Dihydroxynaphthalene.svg.
Wikimedia Commons. (2024). 3,4-Dihydroxy-L-phenylalanine (Levodopa) [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:3,4-Dihydroxy-L-phenylalanin_(Levodopa).svg.
Zhdanova, N. N., Tugay, T., Dighton, J., Zheltonozhsky, V. & McDermott, P. (2004). Ionizing radiation attracts soil fungi. Mycological research, 108 (Pt 9), 1089–96. https://doi.org/10.1017/s0953756204000966.
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104 (12), 1421-6. https://doi.org/10.1017/S0953756200002756.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Matheus Henrique Tibolla; Janaína Fischer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.