Hongos radiotróficos y su uso como agente biorremediador de zonas afectadas por radiación y como agentes protectores
DOI:
https://doi.org/10.33448/rsd-v14i1.47965Palabras clave:
Hongos radiotróficos; Residuos Nucleares; Biorremediación.Resumen
Los residuos nucleares, provenientes del combustible nuclear y de accidentes nucleares, representan un gran riesgo para el medio ambiente y para los seres humanos, provocando diversos problemas como malformaciones, cáncer, pueden convertir áreas inhabitables, provocando cambios en la fauna y la flora de áreas enteras. En la busca de una forma más eficaz de lidiar con dichos contaminantes, se propone el uso de hongos radiotróficos, como los que se encuentran en el reactor de Chernobyl en la Ucrania, los polos y la estación espacial internacional, debido a su alta resistencia a estos contaminantes, su poder de absorción de radiaciones ionizantes y el depósito de radioisótopos en sus paredes celulares, posibilitando su eliminación del medio en que se encuentran, así como el consumo de materia orgánica, como el grafito presente en el reactor número 4 de Chernobyl. Otra propiedad a explorar es el uso protectivo de estos organismos para reducir la incidencia de radiaciones ionizantes en zonas de interés y proteger a los seres humanos. Por tanto, esta investigación tuvo como objetivo estudiar los mecanismos de acción y la eficacia de estos agentes biorremediadores. La investigación consistió en una revisión bibliográfica, utilizando recursos de bases de datos y del acervo de la biblioteca de la Universidad de Passo Fundo, totalizando 56 materiales (artículos y libros), luego de la recopilación y evaluación, se puede concluir que los hongos radiotróficos son prometedores como agentes de biorremediación, con potencial para proteger equipamientos, seres humanos y como biosensores para detectar la presencia de radiaciones ionizantes.
Citas
Aquino, A. R., & Vieira, M. M. F. (2002). Lixo nuclear: Dois pesos e duas medidas [Nuclear waste: two weights and two measures]. Vox Scientiae, 2(7). https://repositorio.ipen.br/bitstreams/88c71922-3a4b-4b37-9097-ba896e446a74/download.
Aquino, K. A. da S., & Aquino, F. da S. (2012). Radioatividade e meio ambiente: Os átomos instáveis da natureza [Radioactivity and the environment: nature’s unstable atoms]. Editora SBQ.
Atkins, P., & Jones, L. (2010). Chemical principles: The quest for insight (5th ed.). W. H. Freeman and Company.
Auyezov, O. & Balmforth, R. (2011). Special report: In Chernobyl, a disaster persists. Reuters. https://www.reuters.com/article/world/special-report-in-chernobyl-a-disaster-persists-idUSTRE72E42C/.
Boháč, J., Krivolutskii, D. A., & Antonova, T. B. (1990). The role of fungi in the biogenous migration of elements and in the accumulation of radionuclides. Agriculture, Ecosystems & Environment, 28(1–4), 31–34. https://doi.org/10.1016/0167-8809(90)90008-2.
Bourguignon, D., & Scholz, N. (2016). Chernobyl 30 years on: Environmental and health effects (Briefing). European Parliamentary Research Service. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2016)581972.
Butler, M. J., & Day, A. W. (1998). Fungal melanins: A review. Canadian Journal of Microbiology, 44(12), 1115–1136. https://doi.org/10.1139/w98-119.
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.
Chowdhary, A., Perfect, J., & de Hoog, G. S. (2014). Black Molds and Melanized Yeasts Pathogenic to Humans. Cold Spring Harbor perspectives in medicine, 5(8). https://doi.org/10.1101/cshperspect.a019570.
Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11(6), 525-531. https://doi.org/10.1016/j.mib.2008.09.013.
Dadachova, E., Bryan, R. A., Howell, R. C., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment cell & melanoma research, 21(2), 192–199. https://doi.org/10.1111/j.1755-148X.2007.00430.x.
Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one, 2(5). https://doi.org/10.1371/journal.pone.0000457.
Eisenman, H. C., & Casadevall, A. (2012). Synthesis and assembly of fungal melanin. Applied microbiology and biotechnology, 93(3), 931–940. https://doi.org/10.1007/s00253-011-3777-2.
Enochs, W. S., Nilges, M. J., & Swartz, H. M. (1993). A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment cell research, 6(2), 91–99. https://doi.org/10.1111/j.1600-0749.1993.tb00587.x.
Fernandes, H. M. (2000). Radioatividade natural [Natural radioactivity]. Ciência Hoje, 28(166), 36-42.
Haselwandter, K., & Berreck, M. (1994). Accumulation of radionuclides in fungi. In G. Winkelmann (Ed.), Metal ions in fungi (pp. 259–278). CRC Press. https://doi.org/10.1201/9781003067221-9.
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M. H., Grinspoon, D., Bullock, M. A., Posner, A., … MSL Science Team (2014). Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science (New York, N.Y.), 343(6169), 1244797. https://doi.org/10.1126/science.1244797.
Helebrant, J. (2017). Penetrating power of different types of radiation: Alpha, beta, gamma, and neutrons [Image]. OpenClipart. https://openclipart.org/detail/274074/penetrating-power-of-different-types-of-radiation-alpha-beta-gamma-and-neutrons.
Hill H. Z. (1992). The function of melanin or six blind people examine an elephant. BioEssays : news and reviews in molecular, cellular and developmental biology, 14(1), 49–56. https://doi.org/10.1002/bies.950140111.
International Energy Agency. (2019). Nuclear power in a clean energy system. International Energy Agency. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system.
Jacobson E. S. (2000). Pathogenic roles for fungal melanins. Clinical microbiology reviews, 13(4), 708–717. https://doi.org/10.1128/CMR.13.4.708.
Jacobson, E. S., & Ikeda, R. (2005). Effect of melanization upon porosity of the cryptococcal cell wall. Medical mycology, 43(4), 327–333. https://doi.org/10.1080/13693780412331271081.
Jørgensen K. S. (2007). In situ bioremediation. Advances in applied microbiology, 61, 285–305. https://doi.org/10.1016/S0065-2164(06)61008-3.
Koch, S. M., Freidank-Pohl, C., Siontas, O., Cortesao, M., Mota, A., Runzheimer, K., Jung, S., Rebrosova, K., Siler, M., Moeller, R., & Meyer, V. (2023). Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1233740
Lamia, K., & Neji, G. (2010). Aspergillus niger is able to decolourize sepia ink contained in saline industrial wastewaters. Desalination and Water Treatment, 20(1-3), 144-153.
Langfelder, K., Streibel, M., Jahn, B., Haase, G., & Brakhage, A. A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal genetics and biology : FG & B, 38(2), 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1.
Malo, M. E., Frank, C., & Dadachova, E. (2020). Radioadapted Wangiella dermatitidis senses radiation in its environment in a melanin-dependent fashion. Fungal biology, 124(5), 368–375. https://doi.org/10.1016/j.funbio.2019.10.011.
Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.
Mohamed, W. S., Abbas, Y. M. M., Ammar, A. A. A., & et al. (2023). Effect of fungal isolates from different samples upon radionuclide behavior and environmental hazard indices during bioleaching process in Gabal Um Hamd, Um Bogma area, southwestern Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 332(5), 3919–3932. https://doi.org/10.1007/s10967-023-09090-1
Moresi, S. (2003). Metodologia da pesquisa [Research methodology]. Universidade Federal do Espírito Santo. http://www.inf.ufes.br/~pdcosta/ensino/2010-2-metodologia-de-pesquisa/MetodologiaPesquisa-Moresi2003.pdf.
Novikova, N. D., Polikarpov, N. A., Deshevaia, E. A., Svistunova, I.uV., & Grigor'ev, A. I. (2007). [Results of the experiment with extended exposure of microorganisms in open space]. Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine, 41(2), 14–20.
Nuclear Energy Agency. (2002). Chernobyl: Assessment of radiological and health impacts – 2002 update of Chernobyl: Ten years on. OECD-NEA. https://www.oecd-nea.org/jcms/pl_13598/chernobyl-assessment-of-radiological-and-health-impacts-2002.
Nuclear Energy Agency. (2009). Considering timescales in the post-closure safety of geological disposal of radioactive waste. OECD Publishing. https://www.oecd-nea.org/jcms/pl_14446/considering-timescales-in-the-post-closure-safety-of-geological-disposal-of-radioactive-waste.
Onishi, Y. (2014). Fukushima and Chernobyl nuclear accidents' environmental assessments and U.S. Hanford site’s waste management. Procedia IUTAM, 10, 372–381. https://doi.org/10.1016/j.piutam.2014.01.032.
Paatero, J., Hämeri, K., Jaakkola, T., Jantunen, M., Koivukoski, J., & Saxén, R. (2010). Airborne and deposited radioactivity from the Chernobyl accident: A review of investigations in Finland. Boreal Environment Research, 15, 19–33. http://www.borenv.net/BER/pdfs/ber15/ber15-019.pdf.
Pacelli, C., Bryan, R. A., Onofri, S., Selbmann, L., Shuryak, I., & Dadachova, E. (2017). Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environmental microbiology, 19(4), 1612–1624. https://doi.org/10.1111/1462-2920.13681.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T., & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21(3), 159-167.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.
Saldaña, M., Jeldres, M., Galleguillos Madrid, F. M., Gallegos, S., Salazar, I., Robles, P., & Toro, N. (2023). Bioleaching Modeling-A Review. Materials (Basel, Switzerland), 16(10), 3812. https://doi.org/10.3390/ma16103812
Schweitzer, A. D., Howell, R. C., Jiang, Z., Bryan, R. A., Gerfen, G., Chen, C. C., Mah, D., Cahill, S., Casadevall, A., & Dadachova, E. (2009). Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PloS one, 4(9). https://doi.org/10.1371/journal.pone.0007229.
Shunk, G. K., Gomez, X. R., Kern, C., & Averesch, N. J. H. (2020). Growth of the radiotrophic fungus Cladosporium sphaerospermum aboard the International Space Station and effects of ionizing radiation. bioRxiv. https://doi.org/10.1101/2020.07.16.205534.
Thibeault, S., Fay, C., Lowther, S., Earle, K., Sauti, G., Kang, J., Park, C. & McMullen, A. (2012). Radiation shielding materials containing hydrogen, boron, and nitrogen: Systematic computational and experimental study—Phase I (NIAC Final Report). NASA. https://www.nasa.gov/general/radiation-shielding-materials-containing-hydrogen-boron-and-nitrogen-systematic-computational-and-experimental-study/.
Thomas, G. A., & Symonds, P. (2016). Radiation exposure and health effects – is it time to reassess the real consequences? Clinical Oncology, 28(4), 231-236. https://doi.org/10.1016/j.clon.2016.01.004.
Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (13th ed.). Pearson.
Turick, C. E., Knox, A. S., Leverette, C. L. & Kritzas, Y. G. (2008). In situ uranium stabilization by microbial metabolites. Journal of environmental radioactivity, 99(6), 890–899. https://doi.org/10.1016/j.jenvrad.2007.11.020.
U.S. Nuclear Regulatory Commission. (2021). Personal annual radiation dose calculator. https://www.nrc.gov/about-nrc/radiation/around-us/calculator.html.
U.S. Nuclear Regulatory Commission. (2024). Radioactive waste: Production, storage, disposal. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html.
UKEssays. (2018). Effects of Nuclear Radiation on the Environment. https://www.ukessays.com/essays/biology/effects-of-nuclear-radiation-on-the-environment-biology-essay.php?vref=1.
Wang, Y., Aisen, P. & Casadevall, A. (1996). Melanin, melanin "ghosts," and melanin composition in Cryptococcus neoformans. Infection and immunity, 64 (7), 2420–4. https://doi.org/10.1128/iai.64.7.2420-2424.1996.
Washington M. A. (2014). Melanized fungi and military medical operations in the nuclear environment. Military medicine, 179(11), 1181–1183. https://doi.org/10.7205/MILMED-D-14-00152.
White, C., & Gadd, G. M. (1990). Biosorption of radionuclides by fungal biomass. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986), 49(4), 331–343. https://doi.org/10.1002/jctb.280490406
Wikimedia Commons. (2024). 1,8-Dihydroxynaphthalene [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:1,8-Dihydroxynaphthalene.svg.
Wikimedia Commons. (2024). 3,4-Dihydroxy-L-phenylalanine (Levodopa) [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:3,4-Dihydroxy-L-phenylalanin_(Levodopa).svg.
Zhdanova, N. N., Tugay, T., Dighton, J., Zheltonozhsky, V. & McDermott, P. (2004). Ionizing radiation attracts soil fungi. Mycological research, 108 (Pt 9), 1089–96. https://doi.org/10.1017/s0953756204000966.
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104 (12), 1421-6. https://doi.org/10.1017/S0953756200002756.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Matheus Henrique Tibolla; Janaína Fischer
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.