Fungos radiotróficos e seu uso como agentes biorremediadores de áreas afetadas por radiação e como agentes protetores

Autores

DOI:

https://doi.org/10.33448/rsd-v14i1.47965

Palavras-chave:

Fungos radiotróficos; Resíduos Nucleares; Biorremediação.

Resumo

Os resíduos nucleares, provenientes de combustíveis nucleares e acidentes nucleares, representam um grande risco ao meio ambiente e ao ser humano, causando diversos problemas como malformações, câncer, podem tornar áreas inabitáveis, causando alterações na fauna e flora de áreas inteiras. Na busca por uma forma mais eficaz de lidar com tais contaminantes, propõe-se a utilização de fungos radiotróficos, como os encontrados habitando o reator de Chernobyl na Ucrânia, nos polos e na estação espacial internacional, devido à sua alta resistência a esses contaminantes, seu poder de absorção de radiações ionizantes e a deposição de radioisótopos em suas paredes celulares, possibilitando a remoção dos mesmos do ambiente em que se encontram, bem como o consumo de matéria orgânica, como o grafite presente no reator número 4 de Chernobyl. Outra propriedade a ser explorada é o uso protetivo desses organismos para reduzir a incidência de radiações ionizantes em áreas de interesse e proteger os seres humanos. Portanto, esta pesquisa teve como objetivo estudar os mecanismos de ação e a eficácia desses agentes biorremediadores. A pesquisa consistiu em uma revisão bibliográfica, utilizando recursos de banco de dados e do acervo da biblioteca da Universidade de Passo Fundo, totalizando 56 materiais (artigos e livros), após compilação e avaliação, pode-se concluir que os fungos radiotróficos são promissores como agentes de biorremediação, com potencial para proteção de equipamentos, seres humanos e como biossensores para detectar a presença de radiação ionizante.

Referências

Aquino, A. R., & Vieira, M. M. F. (2002). Lixo nuclear: Dois pesos e duas medidas [Nuclear waste: two weights and two measures]. Vox Scientiae, 2(7). https://repositorio.ipen.br/bitstreams/88c71922-3a4b-4b37-9097-ba896e446a74/download.

Aquino, K. A. da S., & Aquino, F. da S. (2012). Radioatividade e meio ambiente: Os átomos instáveis da natureza [Radioactivity and the environment: nature’s unstable atoms]. Editora SBQ.

Atkins, P., & Jones, L. (2010). Chemical principles: The quest for insight (5th ed.). W. H. Freeman and Company.

Auyezov, O. & Balmforth, R. (2011). Special report: In Chernobyl, a disaster persists. Reuters. https://www.reuters.com/article/world/special-report-in-chernobyl-a-disaster-persists-idUSTRE72E42C/.

Boháč, J., Krivolutskii, D. A., & Antonova, T. B. (1990). The role of fungi in the biogenous migration of elements and in the accumulation of radionuclides. Agriculture, Ecosystems & Environment, 28(1–4), 31–34. https://doi.org/10.1016/0167-8809(90)90008-2.

Bourguignon, D., & Scholz, N. (2016). Chernobyl 30 years on: Environmental and health effects (Briefing). European Parliamentary Research Service. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2016)581972.

Butler, M. J., & Day, A. W. (1998). Fungal melanins: A review. Canadian Journal of Microbiology, 44(12), 1115–1136. https://doi.org/10.1139/w98-119.

Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.

Chowdhary, A., Perfect, J., & de Hoog, G. S. (2014). Black Molds and Melanized Yeasts Pathogenic to Humans. Cold Spring Harbor perspectives in medicine, 5(8). https://doi.org/10.1101/cshperspect.a019570.

Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11(6), 525-531. https://doi.org/10.1016/j.mib.2008.09.013.

Dadachova, E., Bryan, R. A., Howell, R. C., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment cell & melanoma research, 21(2), 192–199. https://doi.org/10.1111/j.1755-148X.2007.00430.x.

Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one, 2(5). https://doi.org/10.1371/journal.pone.0000457.

Eisenman, H. C., & Casadevall, A. (2012). Synthesis and assembly of fungal melanin. Applied microbiology and biotechnology, 93(3), 931–940. https://doi.org/10.1007/s00253-011-3777-2.

Enochs, W. S., Nilges, M. J., & Swartz, H. M. (1993). A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment cell research, 6(2), 91–99. https://doi.org/10.1111/j.1600-0749.1993.tb00587.x.

Fernandes, H. M. (2000). Radioatividade natural [Natural radioactivity]. Ciência Hoje, 28(166), 36-42.

Haselwandter, K., & Berreck, M. (1994). Accumulation of radionuclides in fungi. In G. Winkelmann (Ed.), Metal ions in fungi (pp. 259–278). CRC Press. https://doi.org/10.1201/9781003067221-9.

Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M. H., Grinspoon, D., Bullock, M. A., Posner, A., … MSL Science Team (2014). Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science (New York, N.Y.), 343(6169), 1244797. https://doi.org/10.1126/science.1244797.

Helebrant, J. (2017). Penetrating power of different types of radiation: Alpha, beta, gamma, and neutrons [Image]. OpenClipart. https://openclipart.org/detail/274074/penetrating-power-of-different-types-of-radiation-alpha-beta-gamma-and-neutrons.

Hill H. Z. (1992). The function of melanin or six blind people examine an elephant. BioEssays : news and reviews in molecular, cellular and developmental biology, 14(1), 49–56. https://doi.org/10.1002/bies.950140111.

International Energy Agency. (2019). Nuclear power in a clean energy system. International Energy Agency. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system.

Jacobson E. S. (2000). Pathogenic roles for fungal melanins. Clinical microbiology reviews, 13(4), 708–717. https://doi.org/10.1128/CMR.13.4.708.

Jacobson, E. S., & Ikeda, R. (2005). Effect of melanization upon porosity of the cryptococcal cell wall. Medical mycology, 43(4), 327–333. https://doi.org/10.1080/13693780412331271081.

Jørgensen K. S. (2007). In situ bioremediation. Advances in applied microbiology, 61, 285–305. https://doi.org/10.1016/S0065-2164(06)61008-3.

Koch, S. M., Freidank-Pohl, C., Siontas, O., Cortesao, M., Mota, A., Runzheimer, K., Jung, S., Rebrosova, K., Siler, M., Moeller, R., & Meyer, V. (2023). Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1233740

Lamia, K., & Neji, G. (2010). Aspergillus niger is able to decolourize sepia ink contained in saline industrial wastewaters. Desalination and Water Treatment, 20(1-3), 144-153.

Langfelder, K., Streibel, M., Jahn, B., Haase, G., & Brakhage, A. A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal genetics and biology : FG & B, 38(2), 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1.

Malo, M. E., Frank, C., & Dadachova, E. (2020). Radioadapted Wangiella dermatitidis senses radiation in its environment in a melanin-dependent fashion. Fungal biology, 124(5), 368–375. https://doi.org/10.1016/j.funbio.2019.10.011.

Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.

Mohamed, W. S., Abbas, Y. M. M., Ammar, A. A. A., & et al. (2023). Effect of fungal isolates from different samples upon radionuclide behavior and environmental hazard indices during bioleaching process in Gabal Um Hamd, Um Bogma area, southwestern Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 332(5), 3919–3932. https://doi.org/10.1007/s10967-023-09090-1

Moresi, S. (2003). Metodologia da pesquisa [Research methodology]. Universidade Federal do Espírito Santo. http://www.inf.ufes.br/~pdcosta/ensino/2010-2-metodologia-de-pesquisa/MetodologiaPesquisa-Moresi2003.pdf.

Novikova, N. D., Polikarpov, N. A., Deshevaia, E. A., Svistunova, I.uV., & Grigor'ev, A. I. (2007). [Results of the experiment with extended exposure of microorganisms in open space]. Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine, 41(2), 14–20.

Nuclear Energy Agency. (2002). Chernobyl: Assessment of radiological and health impacts – 2002 update of Chernobyl: Ten years on. OECD-NEA. https://www.oecd-nea.org/jcms/pl_13598/chernobyl-assessment-of-radiological-and-health-impacts-2002.

Nuclear Energy Agency. (2009). Considering timescales in the post-closure safety of geological disposal of radioactive waste. OECD Publishing. https://www.oecd-nea.org/jcms/pl_14446/considering-timescales-in-the-post-closure-safety-of-geological-disposal-of-radioactive-waste.

Onishi, Y. (2014). Fukushima and Chernobyl nuclear accidents' environmental assessments and U.S. Hanford site’s waste management. Procedia IUTAM, 10, 372–381. https://doi.org/10.1016/j.piutam.2014.01.032.

Paatero, J., Hämeri, K., Jaakkola, T., Jantunen, M., Koivukoski, J., & Saxén, R. (2010). Airborne and deposited radioactivity from the Chernobyl accident: A review of investigations in Finland. Boreal Environment Research, 15, 19–33. http://www.borenv.net/BER/pdfs/ber15/ber15-019.pdf.

Pacelli, C., Bryan, R. A., Onofri, S., Selbmann, L., Shuryak, I., & Dadachova, E. (2017). Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environmental microbiology, 19(4), 1612–1624. https://doi.org/10.1111/1462-2920.13681.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.

Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T., & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21(3), 159-167.

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.

Saldaña, M., Jeldres, M., Galleguillos Madrid, F. M., Gallegos, S., Salazar, I., Robles, P., & Toro, N. (2023). Bioleaching Modeling-A Review. Materials (Basel, Switzerland), 16(10), 3812. https://doi.org/10.3390/ma16103812

Schweitzer, A. D., Howell, R. C., Jiang, Z., Bryan, R. A., Gerfen, G., Chen, C. C., Mah, D., Cahill, S., Casadevall, A., & Dadachova, E. (2009). Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PloS one, 4(9). https://doi.org/10.1371/journal.pone.0007229.

Shunk, G. K., Gomez, X. R., Kern, C., & Averesch, N. J. H. (2020). Growth of the radiotrophic fungus Cladosporium sphaerospermum aboard the International Space Station and effects of ionizing radiation. bioRxiv. https://doi.org/10.1101/2020.07.16.205534.

Thibeault, S., Fay, C., Lowther, S., Earle, K., Sauti, G., Kang, J., Park, C. & McMullen, A. (2012). Radiation shielding materials containing hydrogen, boron, and nitrogen: Systematic computational and experimental study—Phase I (NIAC Final Report). NASA. https://www.nasa.gov/general/radiation-shielding-materials-containing-hydrogen-boron-and-nitrogen-systematic-computational-and-experimental-study/.

Thomas, G. A., & Symonds, P. (2016). Radiation exposure and health effects – is it time to reassess the real consequences? Clinical Oncology, 28(4), 231-236. https://doi.org/10.1016/j.clon.2016.01.004.

Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (13th ed.). Pearson.

Turick, C. E., Knox, A. S., Leverette, C. L. & Kritzas, Y. G. (2008). In situ uranium stabilization by microbial metabolites. Journal of environmental radioactivity, 99(6), 890–899. https://doi.org/10.1016/j.jenvrad.2007.11.020.

U.S. Nuclear Regulatory Commission. (2021). Personal annual radiation dose calculator. https://www.nrc.gov/about-nrc/radiation/around-us/calculator.html.

U.S. Nuclear Regulatory Commission. (2024). Radioactive waste: Production, storage, disposal. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html.

UKEssays. (2018). Effects of Nuclear Radiation on the Environment. https://www.ukessays.com/essays/biology/effects-of-nuclear-radiation-on-the-environment-biology-essay.php?vref=1.

Wang, Y., Aisen, P. & Casadevall, A. (1996). Melanin, melanin "ghosts," and melanin composition in Cryptococcus neoformans. Infection and immunity, 64 (7), 2420–4. https://doi.org/10.1128/iai.64.7.2420-2424.1996.

Washington M. A. (2014). Melanized fungi and military medical operations in the nuclear environment. Military medicine, 179(11), 1181–1183. https://doi.org/10.7205/MILMED-D-14-00152.

White, C., & Gadd, G. M. (1990). Biosorption of radionuclides by fungal biomass. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986), 49(4), 331–343. https://doi.org/10.1002/jctb.280490406

Wikimedia Commons. (2024). 1,8-Dihydroxynaphthalene [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:1,8-Dihydroxynaphthalene.svg.

Wikimedia Commons. (2024). 3,4-Dihydroxy-L-phenylalanine (Levodopa) [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:3,4-Dihydroxy-L-phenylalanin_(Levodopa).svg.

Zhdanova, N. N., Tugay, T., Dighton, J., Zheltonozhsky, V. & McDermott, P. (2004). Ionizing radiation attracts soil fungi. Mycological research, 108 (Pt 9), 1089–96. https://doi.org/10.1017/s0953756204000966.

Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104 (12), 1421-6. https://doi.org/10.1017/S0953756200002756.

Downloads

Publicado

06/01/2025

Como Citar

TIBOLLA, M. H.; FISCHER, J. Fungos radiotróficos e seu uso como agentes biorremediadores de áreas afetadas por radiação e como agentes protetores. Research, Society and Development, [S. l.], v. 14, n. 1, p. e2514147965, 2025. DOI: 10.33448/rsd-v14i1.47965. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47965. Acesso em: 9 jan. 2025.

Edição

Seção

Artigos de Revisão