Extraction and characterization of β-fructofuranosidases produced by Kluyveromyces marxianus CCMB 322

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5828

Keywords:

Enzymes; β-fructofuranosidase; Kluyveromyces marxianus.

Abstract

Invertase (β-fructofuranosidase, EC 3.2.1.26) catalyzes sucrose hydrolysis into glucose and fructose and it is one of the simplest carbohydrases. These enzymes occur widely in nature and their presence has been reported in microorganisms and plants. Since yeasts are the main industrial source, most researches concerning this enzyme have focused on invertase extracted from such source. This study extracted and characterized inverted intracellular (Inv-I) and extracellular (Inv-E) of Kluyveromyces marxianus CCMB 322 isolated in the baiano semi-arid region. Kluyveromyces marxianus CCMB 322 produces intracellular and extracellular invertase with different characteristics. The optimum activity was achieved at approximately pH 3.9 and 45ºC, in Inv-I and Inv-E. The invertases produced by K. marxianus CCMB 322 showed thermal stability similar to that found in other studies. The Km and Vmax values of the Inv-I enzyme were 61.12mM and 5.56 µmol/mL.min-1, but the Km and Vmax values of the Inv-E enzyme were 76.5mM and 0.364 µmol/mL.min-1. Inverted from K. marxianus is a higher affinity for sucrose compared to enzymes from other sources.

References

Barbosa, P. M. G., de Morais, T. P., de Andrade Silva, C. A., da Silva Santos, F. R., Garcia, N. F. L., Fonseca, G. G., … da Paz, M. F. (2018). Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Preparative Biochemistry and Biotechnology, 48(6), 506–513. https://doi.org/10.1080/10826068.2018.1466155

Czyrko, J., Sliwiak, J., Imiolczyk, B., Gdaniec, Z., Jaskolski, M., & Brzezinski, K. (2018). Metal-cation regulation of enzyme dynamics is a key factor influencing the activity of S-adenosyl-l-homocysteine hydrolase from Pseudomonas aeruginosa. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-29535-y

Dinarvand, M., Rezaee, M., & Foroughi, M. (2017). Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Brazilian Journal of Microbiology, 48(3), 427–441. https://doi.org/10.1016/j.bjm.2016.10.026

Do Nascimento, G. C., Batista, R. D., Do Amaral Santos, C. C. A., Da Silva, E. M., De Paula, F. C., Mendes, D. B., … De Almeida, A. F. (2019). β-Fructofuranosidase and β -D-Fructosyltransferase from New Aspergillus carbonarius PC-4 Strain Isolated from Canned Peach Syrup: Effect of Carbon and Nitrogen Sources on Enzyme Production. Scientific World Journal, 2019. https://doi.org/10.1155/2019/6956202

Lincoln, L., & More, S. S. (2018). Purification and biochemical characterization of an extracellular β-d-fructofuranosidase from Aspergillus sp. 3 Biotech, 8(2), 1–11. https://doi.org/10.1007/s13205-018-1109-2

Marcišauskas, S., Ji, B., & Nielsen, J. (2019). Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics, 20(1), 1–9. https://doi.org/10.1186/s12859-019-3134-5

Miller, G. L. (1956). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426–428. https://doi.org/10.1021/ac60147a030

Mohandesi, N., Siadat, S. O. R., Haghbeen, K., & Hesampour, A. (2016). Cloning and expression of Saccharomyces cerevisiae SUC2 gene in yeast platform and characterization of recombinant enzyme biochemical properties. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0441-7

Nadeem, H., Rashid, M. H., Siddique, M. H., Azeem, F., Muzammil, S., Javed, M. R., … Riaz, M. (2015). Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochemistry, 50(8), 1202–1210. https://doi.org/10.1016/j.procbio.2015.04.015

Oliveira, R. Q., Rosa, C. A., Uetanabaro, A. P. T., Azeredo, A., Neto, A. G., & Assis, S. A. (2009). Polygalacturonase secreted by yeasts from Brazilian semi-arid environments. International Journal of Food Sciences and Nutrition, 60(SUPPL. 7), 72–80. https://doi.org/10.1080/09637480802534517

Patching, J. W., & Rose, A. H. (1970). Chapter II The Effects and Control of Temperature. https://doi.org/10.1016/S0580-9517(08)70216-2

Ragauskaite, E., & Cizeikiene, D. (2019). Apple squeeze and sugar beet molasses application for yeast invertase production. 176–181. https://doi.org/10.22616/foodbalt.2019.039

Santos, I. R., Mendes, T. P. S., Miranda, A. C. dos A., Costa, D. N., Figueroa, G. M., Soares, V. D. M., … Cedro, P. É. P. (2020). Production and characterization of amylase obtained from Rhizopus microsporus var. oligosporus. Research, Society and Development, 9(7), 694974810. https://doi.org/10.33448/rsd-v9i7.4810

Singh, R., Singh, A., & Sachan, S. (2019). Enzymes Used in the Food Industry: Friends or Foes? In Enzymes in Food Biotechnology (pp. 827–843). https://doi.org/10.1016/B978-0-12-813280-7.00048-7

Yuivar, Y., Barahona, S., Alcaíno, J., Cifuentes, V., & Baeza, M. (2017). Biochemical and thermodynamical characterization of glucose oxidase, invertase, and alkaline phosphatase secreted by Antarctic yeasts. Frontiers in Molecular Biosciences, 4(DEC), 1–10. https://doi.org/10.3389/fmolb.2017.00086

Downloads

Published

17/07/2020

How to Cite

PEIXOTO, A. S.; CEDRO, P. Évelin P.; MENDES, T. P. S.; MIRANDA, A. C. dos A.; NASCIMENTO JUNIOR, B. B. do; LIMA, D. M.; BARRETO, M. M.; VALASQUES JUNIOR, G. L. Extraction and characterization of β-fructofuranosidases produced by Kluyveromyces marxianus CCMB 322. Research, Society and Development, [S. l.], v. 9, n. 8, p. e570985828, 2020. DOI: 10.33448/rsd-v9i8.5828. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5828. Acesso em: 12 nov. 2024.

Issue

Section

Exact and Earth Sciences