Acute thermal stress alters epicardium, epicardic vessels, morphological, morphometric and quantitative aspects of the cardiac plexus of the farm chicken

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.6993

Keywords:

Cardiac neurons; Intrinsic cardiac nervous system; Heart vessels; Cardiac fat; Hyperthermia; Poultry.

Abstract

The genetic improvement of poultry has been used in order to maximize the production of chicken meat. Thus, management techniques have stood out, as they improve profitability and reduce production costs, since they optimize the weight gain of birds and speed up slaughter. However, the accelerated weight gain can make the animals susceptible to metabolic disorders due to the lack of adaptation of the cardiorespiratory system whose functioning is related to room temperature and cardiac innervation. Thus, the objective of this study was to evaluate the influence of acute thermal stress on the heart of broiler chickens, evaluating the epicardium, the epicardial vessels and the quantitative, morphological, morphometric and histopathological aspects of the cardiac plexus. For that, 14 male animals were used, divided into two groups (n = 7): animals kept in an environment of thermal comfort (18oC) and animals in an environment of thermal stress (kept at 32o C in the 12 hours prior to slaughter). The results showed that thermal stress decreased the area of the adipocytes, the area and the length of the cardiac ganglia, increased the total collagen of the adipocytes and decreased the total collagen of the vessels and ganglia of the heart. It can be concluded that, in fact, acute thermal stress interfered in the parameters evaluated, since several histopathological changes were identified, such as the presence of lymphocyte infiltrates in the adipocytes of the epicardial tissue, edema, vascular congestion, fibrin infiltration in the cardiac plexus ganglia and ganglionitis.

References

Akamatsu, F. E.; Gama, E. F.; Souza,R. R.; Leme, R. J. A.; Liberti, E. A. (2007). Pre and post natal undernutrition influences the development of the subepicardic ganglion capsule. Braz. J. Morphol, 24 (2),118-125.

Brasileiro Filho, G. (2017). Bogliolo patologia. 9. ed. Rio de Janeiro: Guanabara Koogan. 1556p.

COPACOL. (2014). Manual de produção de frango de corte. Equipe técnica integração avícola Copacol Paraná, Copacol, p. 30-32.

Hausfater, P.; Doumenc, B.; Chopin, S.; Le, M.Y.; Santin, A.; Dautheville, S.; Patzak, A.; Hericord, P.; Mégarbane, B.; Andronikof, M.; Terbaoui, N.; Riou, B. (2010). Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heat wave. Crit Care.;14(3).

Jimenes, D. R.; Muniz, E.; Sant’ana, D. M. G.; Gomes, C. R. G.; Barbosa, C. P. (2017). Inervação cardíaca: um estudo de revisão com ênfase no plexo cardíaco. Revista Uningá, 52 (1), 92-99.

Kolpakov, V., Gordon, D., Hulk, T.J. (1995). Nitric Oxide–Generating Compounds Inhibit Total Protein and Collagen Synthesis in Cultured Vascular Smooth Muscle Cells. Circulation Research, 76 (2), 305-309.

Laganá C. (2008). Influência de altas temperaturas na alimentação de frangos de corte. Pesquisa e tecnologia. Acessado em 26/06/2020, em http://www.infobibos.com/Artigos/2009_3/FrangoCorte/index.htm.

Lopes, C.R.; Falkowski, G.J.S.; Brustolin C.F; Massini, P. F.; Moreira, N. M.; Braga, C. F.; Ferreira, E. C.; Aleixo, D. L.; Araújo, S. M. (2013). Effect of different homeopathic medicines on histopathology of mice infected by Trypanosomacruzi. Int. J. High Dilution Res, 12 (44), 141-142.

Martins, J. M. S.; Litz F. H.; Castilhano, H.; Campos, D. F.; Taveira R. Z., Neto, O.J.S. (2012). Melhoramento genético de frangos de corte. PUBVET, 6 (18), 1369-1374.

Moura, G. G. C.; Neto, L. F.; Santana, A. P. L. (2017). Melhoramento genético em aves de corte. Revista Conexão eletrônica, 14 (1), 363-369.

Oba, A., Lopes, P. C. F., Boiago, M. M., Silva, A. M. S., Montassier H. J., Souza P. A. (2012). Características produtivas e imunológicas de frangos de corte submetidos a dietas suplementadas com cromo, criados sob diferentes condições de ambiente. Revista Brasileira de Zootecnia, 41 (5), 1186-1192.

Obata, K., Morita, H., & Takaki, M. (2020). Mechanism underlying the negative inotropic effect in rat left ventricle in hyperthermia: the role of TRPV1. The journal of physiological sciences, 70 (1), 4.

Ohk, T. G.; Ahn, J. H.; Park, Y. E.; Lee, T. K.; Kim, B.; Lee, J. C.; Cho, J. H.; Park, J. H.; Won, M. H.; Lee, C. H. (2020). Comparison of neuronal death and expression of TNF α and MCT4 in the gerbil hippocampal CA1 region induced by ischemia/reperfusion under hyperthermia to those under normothermia. Molecular medicine reports, 22 (2), 1044–1052.

Queiroz J. C. F.; Alonso-Vale M. I. C.; Curi R.; Lima F. B. (2009). Controle da adipogênese por ácidos graxos. Arq. Bras. Endocrinol Metab, 5 (53), 582-594.

Rostagno, H.S.; Albino, L.F.T.; Donzele, J. L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T. Brazilian tables for birds and pigs: composition of foods and nutritional requirements. Tese (Doutorado). Universidade Federal de Viçosa. Minas Gerais, 2011.

Sacks, H.S.; Fain, J.N. (2011). Human epicardial fat: what is new and what is missing? Clinicaland Experimental. Clin Exp Pharmacol Physiol. 38, 879–887.

Silva, L. S.; Gai, V. F. (2017). Produtividade de frangos de corte em sistema lona azul submetidos a diferentes programas de luz. Revista Cultivando o saber, 10 (2) 259-268.

Tang, S.; Yin, B.; Xu, J.; Bao, E. (2018). Rosemary Reduces Heat Stress by Inducing CRYAB and HSP70 Expression in Broiler Chickens. Oxid Med Cell Longev, https://doi.org/10.1155/2018/7014126.

Tickle, P. G.; Paxton, H.; Rankin, J. W.; Hutchinson, J. R.; Codd, J. R. (2014). Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ, PMID: 25071981 PMCID: PMC4103091.

Wang, J.; He, W.; Guo, L.; Zhang, Y.; Li, H.; Han, S.; Shen, D. (2017). The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol Med Rep, 16 (2), 1973-1981.

Published

18/08/2020

How to Cite

VICENTIN, F. S.; MOREIRA, K. F.; JIMENES, D. R.; PEREIRA, A. V.; GASPARINO, E.; BARBOSA, C. P. Acute thermal stress alters epicardium, epicardic vessels, morphological, morphometric and quantitative aspects of the cardiac plexus of the farm chicken. Research, Society and Development, [S. l.], v. 9, n. 9, p. e289996993, 2020. DOI: 10.33448/rsd-v9i9.6993. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6993. Acesso em: 3 jan. 2025.

Issue

Section

Agrarian and Biological Sciences