Autophagy and Cancer: a literature review
DOI:
https://doi.org/10.33448/rsd-v9i9.7493Keywords:
Autophagy; Neoplasms; Growth and development.Abstract
Autophagia, or macroautophagy, is a phenomenon of cellular degradation and recycling that occurs constitutively at low levels in eukaryotic cells. Thasgained prominence as a pathway of mobilization of metabolic substrates that allow cancer cells to survive microenvironments with low nutrient supply or under conditions of oxidative stress, where the role of proteins such as beclin-1 and LC3B has been widely researched in various types of cancer. The aim of the present study was to review the literature on the performance of the autophagy process and its relationship with the development of cancer through autophagia. To design This article, a bibliographic survey was carried out covering the period from 1998 to 2019. Google academic, Scielo, LIlacs and Medline research portals were used. In this review, it is the result that autophagy has a dual role in cancer, as it can prevent tumor initiation through the suppression of chronic damage, inflammation, accumulation of damaged organelles and genomic instability, but Autophagia also maintains the Mitochondrial metabolic functions that provide nutrients for the growth of tumor cells, creating aggressive cancers.
References
Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., & Stark, G. R. (1998). The P53 Network. Journal Of Biological Chemistry, 273(1), 1-4. http://dx.doi.org/10.1074/jbc.273.1.1.
Amaravadi, R., Kimmelman, A. C., & White, E. (2016). Recent insights into the function of autophagy in cancer. Genes & development, 30(17), 1913-30. http://dx.doi.org/10.1101/gad.287524.116
Cao, Y., & Klionsky, D. J. (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell research, 17(10), 839-49.
Chen, G., Hu, X., Zhang, W., Xu, N., Wang, F. Q., Jia, J., & Zhao, Y. F. (2012). Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis, 17(1), 90-101. http://dx.doi.org/10.1007/s10495-011-0658-1.
Chen, Y., Zhou, X., Qiao, J., & Bao, A. (2017). Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549 cells. Journal of cell communication and signaling, 11(3), 219-226. http://dx.doi.org/10.1007/s12079-016-0364-4.
Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology, 15(1), 49-63. http://dx.doi.org/10.1038/nrm3722
Dielschneider, R. F., Henson, E. S., & Gibson, S. B. (2017). Lysosomes as oxidative targets for cancer therapy. Oxidative medicine and cellular longevity, 2017. http://dx.doi.org/10.1155/2017/3749157.
Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., & Yoshimori, T. (2008). An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular biology of the cell, 19(11), 4651-59. http://dx.doi.org/10.1091/mbc.e08-03-0312.
Guo, J. Y., Chen, H. Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., & Coller, H. A. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & development, 25(5), 460-470. http://dx.doi.org/10.1101/gad.2016311
Guo, J. Y., & White, E. (2016, January). Autophagy, metabolism, and cancer. In Cold Spring Harbor symposia on quantitative biology. 81, 73-78). Cold Spring Harbor Laboratory Press. http://dx.doi.org/10.1101/sqb.2016.81.030981
Guo, J. Y., Xia, B., & White, E. (2013). Autophagy-mediated tumor promotion. Cell, 155(6), 1216-19. http://dx.doi.org/10.1016/j.cell.2013.11.019
Jiang, L. C., Huang, S. Y., Zhang, D. S., Zhang, S. H., Li, W. G., Zheng, P. H., & Chen, Z. W. (2014). Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis. Brazilian Journal of Medical and Biological Research, 47(3), 252-8. https://doi.org/10.1590/1414-431X20133231
Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28-31.http://dx.doi.org/10.4161/auto.3269.
Juenemann, K., & Reits, E. A. (2012). Alternative macroautophagic pathways. International journal of cell biology, 2012. http://dx.doi.org/10.1155/2012/189794.
Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation, 18(4), 571-80. http://dx.doi.org/10.1038/cdd.2010.191.
Koo, J. S., Kim, J. W., & Yoon, J. S. (2016). Expression of autophagy and reactive oxygen species-related proteins in lacrimal gland adenoid cystic carcinoma. Yonsei medical journal, 57(2), 482-489.http://dx.doi.org/10.3349/ymj.2016.57.2.482
Levine, B., Sinha, S. C., & Kroemer, G. (2008). Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 4(5), 600-6.
Levine, B. (2006). Unraveling the role of autophagy in cancer. Autophagy, 2(2), 65-66.
Levine, B., & Yuan, J. (2006). Autophagy in cell death: an innocent convict?. The Journal of Clinical Investigation, 116(12), 3293-93.
Liang, L. Z., Ma, B., Liang, Y. J., Liu, H. C., Zheng, G. S., Zhang, T. H., & Liao, G. Q. (2012). High expression of the autophagy gene Beclin‐1 is associated with favorable prognosis for salivary gland adenoid cystic carcinoma. Journal of oral pathology & medicine, 41(8), 621-9.
Liu, B., Miyake, H., Nishikawa, M., Tei, H., & Fujisawa, M. (2015). Expression profile of autophagy-related markers in localized prostate cancer: correlation with biochemical recurrence after radical prostatectomy. Urology, 85(6), 1424-30.
Liu, J. J., Lin, M., Yu, J. Y., Liu, B., & Bao, J. K. (2011). Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer letters, 300(2), 105-14.
Luo, S., & Rubinsztein, D. C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death & Differentiation, 17(2), 268-77.
Maruyama, Y., Sou, Y. S., Kageyama, S., Takahashi, T., Ueno, T., Tanaka, K., & Ichimura, Y. (2014). LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and biophysical research communications, 446(1), 309-15.
Miracco, C., Cevenini, G., Franchi, A., Luzi, P., Cosci, E., Mourmouras, V., & Moretti, D. (2010). Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Human pathology, 41(4), 503-512. http://dx.doi.org/10.1016/j.humpath.2009.09.004
Mortezavi, A., Salemi, S., Rupp, N. J., Rüschoff, J. H., Hermanns, T., Poyet, C., & Wild, P. (2017). Negative LC3b immunoreactivity in cancer cells is an independent prognostic predictor of prostate cancer specific death. Oncotarget, 8(19), 31765. http://dx.doi.org/10.18632/oncotarget.15986
Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation, 45(6), 487-498. http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x
Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & redox signaling, 20(3), 460-473. http://dx.doi.org/10.1089/ars.2013.5371
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., & Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-39.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].
Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular cell, 53(2), 167-78. http://dx.doi.org/10.1016/j.molcel.2013.12.014
Roy, S., & Debnath, J. (2010, December). Autophagy and tumorigenesis. In Seminars in immunopathology 32(4), 383-396). Springer-Verlag. http://dx.doi.org/10.1007/s00281-010-0213-0
Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O., & Klionsky, D. J. (2007). Potential therapeutic applications of autophagy. Nature reviews Drug discovery, 6(4), 304-12. http://dx.doi.org/10.1038/nrd2272
Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., ... & White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer discovery, 3(11), 1272-85. http://dx.doi.org/10.1158/2159-8290.cd-13-0397
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. http://dx.doi.org/10.1038/35042675
Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., & Elazar, Z. (2010). LC3 and GATE‐16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal, 29(11), 1792-1802.http://dx.doi.org/10.1038/emboj.2010.74
White, E. (2016). Autophagy and p53. Cold Spring Harbor perspectives in medicine, 6(4), a026120.
Yang, Z., & Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology, 12(9), 814-822.http://dx.doi.org/10.1038/ncb0910-814
Yu, P., Zhang, C., Gao, C. Y., Ma, T., Zhang, H., Zhou, M. M., & Kong, L. Y. (2017). Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death. Oncotarget, 8(38), 64032.http://dx.doi.org/10.18632/oncotarget.19299
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Gabriel Cortez da Silva; Victor Angelo Martins Montalli; Ney Soares De Araújo ; Vera Cavalcanti De Araújo ; João Augusto Vianna Goulart-Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.