Autophagy and Cancer: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7493

Keywords:

Autophagy; Neoplasms; Growth and development.

Abstract

Autophagia, or macroautophagy, is a phenomenon of cellular degradation and recycling that occurs constitutively at low levels in eukaryotic cells. Thasgained prominence as a pathway of mobilization of metabolic substrates that allow cancer cells to survive microenvironments with low nutrient supply or under conditions of oxidative stress, where the role of proteins such as beclin-1 and LC3B has been widely researched in various types of cancer. The aim of the present study was to review the literature on the performance of the autophagy process and its relationship with the development of cancer through autophagia. To design This article, a bibliographic survey was carried out covering the period from 1998 to 2019. Google academic, Scielo, LIlacs and Medline research portals were used. In this review, it is the result that autophagy has a dual role in cancer, as it can prevent tumor initiation through the suppression of chronic damage, inflammation, accumulation of damaged organelles and genomic instability, but Autophagia also maintains the Mitochondrial metabolic functions that provide nutrients for the growth of tumor cells, creating aggressive cancers.

References

Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., & Stark, G. R. (1998). The P53 Network. Journal Of Biological Chemistry, 273(1), 1-4. http://dx.doi.org/10.1074/jbc.273.1.1.

Amaravadi, R., Kimmelman, A. C., & White, E. (2016). Recent insights into the function of autophagy in cancer. Genes & development, 30(17), 1913-30. http://dx.doi.org/10.1101/gad.287524.116

Cao, Y., & Klionsky, D. J. (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell research, 17(10), 839-49.

Chen, G., Hu, X., Zhang, W., Xu, N., Wang, F. Q., Jia, J., & Zhao, Y. F. (2012). Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis, 17(1), 90-101. http://dx.doi.org/10.1007/s10495-011-0658-1.

Chen, Y., Zhou, X., Qiao, J., & Bao, A. (2017). Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549 cells. Journal of cell communication and signaling, 11(3), 219-226. http://dx.doi.org/10.1007/s12079-016-0364-4.

Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology, 15(1), 49-63. http://dx.doi.org/10.1038/nrm3722

Dielschneider, R. F., Henson, E. S., & Gibson, S. B. (2017). Lysosomes as oxidative targets for cancer therapy. Oxidative medicine and cellular longevity, 2017. http://dx.doi.org/10.1155/2017/3749157.

Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., & Yoshimori, T. (2008). An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular biology of the cell, 19(11), 4651-59. http://dx.doi.org/10.1091/mbc.e08-03-0312.

Guo, J. Y., Chen, H. Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., & Coller, H. A. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & development, 25(5), 460-470. http://dx.doi.org/10.1101/gad.2016311

Guo, J. Y., & White, E. (2016, January). Autophagy, metabolism, and cancer. In Cold Spring Harbor symposia on quantitative biology. 81, 73-78). Cold Spring Harbor Laboratory Press. http://dx.doi.org/10.1101/sqb.2016.81.030981

Guo, J. Y., Xia, B., & White, E. (2013). Autophagy-mediated tumor promotion. Cell, 155(6), 1216-19. http://dx.doi.org/10.1016/j.cell.2013.11.019

Jiang, L. C., Huang, S. Y., Zhang, D. S., Zhang, S. H., Li, W. G., Zheng, P. H., & Chen, Z. W. (2014). Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis. Brazilian Journal of Medical and Biological Research, 47(3), 252-8. https://doi.org/10.1590/1414-431X20133231

Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28-31.http://dx.doi.org/10.4161/auto.3269.

Juenemann, K., & Reits, E. A. (2012). Alternative macroautophagic pathways. International journal of cell biology, 2012. http://dx.doi.org/10.1155/2012/189794.

Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation, 18(4), 571-80. http://dx.doi.org/10.1038/cdd.2010.191.

Koo, J. S., Kim, J. W., & Yoon, J. S. (2016). Expression of autophagy and reactive oxygen species-related proteins in lacrimal gland adenoid cystic carcinoma. Yonsei medical journal, 57(2), 482-489.http://dx.doi.org/10.3349/ymj.2016.57.2.482

Levine, B., Sinha, S. C., & Kroemer, G. (2008). Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 4(5), 600-6.

Levine, B. (2006). Unraveling the role of autophagy in cancer. Autophagy, 2(2), 65-66.

Levine, B., & Yuan, J. (2006). Autophagy in cell death: an innocent convict?. The Journal of Clinical Investigation, 116(12), 3293-93.

Liang, L. Z., Ma, B., Liang, Y. J., Liu, H. C., Zheng, G. S., Zhang, T. H., & Liao, G. Q. (2012). High expression of the autophagy gene Beclin‐1 is associated with favorable prognosis for salivary gland adenoid cystic carcinoma. Journal of oral pathology & medicine, 41(8), 621-9.

Liu, B., Miyake, H., Nishikawa, M., Tei, H., & Fujisawa, M. (2015). Expression profile of autophagy-related markers in localized prostate cancer: correlation with biochemical recurrence after radical prostatectomy. Urology, 85(6), 1424-30.

Liu, J. J., Lin, M., Yu, J. Y., Liu, B., & Bao, J. K. (2011). Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer letters, 300(2), 105-14.

Luo, S., & Rubinsztein, D. C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death & Differentiation, 17(2), 268-77.

Maruyama, Y., Sou, Y. S., Kageyama, S., Takahashi, T., Ueno, T., Tanaka, K., & Ichimura, Y. (2014). LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and biophysical research communications, 446(1), 309-15.

Miracco, C., Cevenini, G., Franchi, A., Luzi, P., Cosci, E., Mourmouras, V., & Moretti, D. (2010). Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Human pathology, 41(4), 503-512. http://dx.doi.org/10.1016/j.humpath.2009.09.004

Mortezavi, A., Salemi, S., Rupp, N. J., Rüschoff, J. H., Hermanns, T., Poyet, C., & Wild, P. (2017). Negative LC3b immunoreactivity in cancer cells is an independent prognostic predictor of prostate cancer specific death. Oncotarget, 8(19), 31765. http://dx.doi.org/10.18632/oncotarget.15986

Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation, 45(6), 487-498. http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x

Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & redox signaling, 20(3), 460-473. http://dx.doi.org/10.1089/ars.2013.5371

Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., & Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-39.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].

Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular cell, 53(2), 167-78. http://dx.doi.org/10.1016/j.molcel.2013.12.014

Roy, S., & Debnath, J. (2010, December). Autophagy and tumorigenesis. In Seminars in immunopathology 32(4), 383-396). Springer-Verlag. http://dx.doi.org/10.1007/s00281-010-0213-0

Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O., & Klionsky, D. J. (2007). Potential therapeutic applications of autophagy. Nature reviews Drug discovery, 6(4), 304-12. http://dx.doi.org/10.1038/nrd2272

Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., ... & White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer discovery, 3(11), 1272-85. http://dx.doi.org/10.1158/2159-8290.cd-13-0397

Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. http://dx.doi.org/10.1038/35042675

Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., & Elazar, Z. (2010). LC3 and GATE‐16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal, 29(11), 1792-1802.http://dx.doi.org/10.1038/emboj.2010.74

White, E. (2016). Autophagy and p53. Cold Spring Harbor perspectives in medicine, 6(4), a026120.

Yang, Z., & Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology, 12(9), 814-822.http://dx.doi.org/10.1038/ncb0910-814

Yu, P., Zhang, C., Gao, C. Y., Ma, T., Zhang, H., Zhou, M. M., & Kong, L. Y. (2017). Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death. Oncotarget, 8(38), 64032.http://dx.doi.org/10.18632/oncotarget.19299

Published

30/08/2020

How to Cite

SILVA, G. C. da .; MONTALLI, V. A. M. .; ARAÚJO , N. S. D. .; ARAÚJO , V. C. D. .; GOULART-FILHO , J. A. V. . Autophagy and Cancer: a literature review. Research, Society and Development, [S. l.], v. 9, n. 9, p. e584997493, 2020. DOI: 10.33448/rsd-v9i9.7493. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7493. Acesso em: 3 jan. 2025.

Issue

Section

Health Sciences