Autofagia e Câncer: uma revisão da literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7493

Palavras-chave:

Autofagia; Câncer; Crescimento e desenvolvimento.

Resumo

Introdução: A autofagia, ou macroautofagia, é um fenômeno de degradação e reciclagem celular que ocorre constitutivamente em baixos níveis nas células eucarióticas. Tem ganhado destaque como via de mobilização de substratos metabólicos que permitem células cancerosas sobreviverem a microambientes com baixa oferta de nutrientes ou em condições de estresse oxidativo, onde o papel de proteínas como o Beclin-1 e LC3B tem sido amplamente pesquisado em diversos tipos de câncer. Objetivo: O objetivo do presente estudo foi fazer uma revisão de literatura acerca da atuação do processo de autofagia e sua relação com o desenvolvimento de câncer através da autofagia tumoral. Metodologia: Para concepção deste artigo foi realizado um levantamento bibliográfico que abrangeu o período de 1998 a 2019. Foram utilizados os portais de pesquisa Google Acadêmico, Scielo, LIlacs e Medline. Resultados e Conclusão: Nesta revisão tem como resultado que a autofagia tem papel dual no câncer pois pode prevenir a iniciação tumoral através da supressão de danos crônicos, inflamação, acúmulo de organelas danificadas e instabilidade genômica, porém a autofagia também mantém as funções metabólicas mitocondriais que fornece nutrientes para o crescimento das células tumorais, criando canceres agressivos.

Referências

Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., & Stark, G. R. (1998). The P53 Network. Journal Of Biological Chemistry, 273(1), 1-4. http://dx.doi.org/10.1074/jbc.273.1.1.

Amaravadi, R., Kimmelman, A. C., & White, E. (2016). Recent insights into the function of autophagy in cancer. Genes & development, 30(17), 1913-30. http://dx.doi.org/10.1101/gad.287524.116

Cao, Y., & Klionsky, D. J. (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell research, 17(10), 839-49.

Chen, G., Hu, X., Zhang, W., Xu, N., Wang, F. Q., Jia, J., & Zhao, Y. F. (2012). Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis, 17(1), 90-101. http://dx.doi.org/10.1007/s10495-011-0658-1.

Chen, Y., Zhou, X., Qiao, J., & Bao, A. (2017). Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549 cells. Journal of cell communication and signaling, 11(3), 219-226. http://dx.doi.org/10.1007/s12079-016-0364-4.

Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology, 15(1), 49-63. http://dx.doi.org/10.1038/nrm3722

Dielschneider, R. F., Henson, E. S., & Gibson, S. B. (2017). Lysosomes as oxidative targets for cancer therapy. Oxidative medicine and cellular longevity, 2017. http://dx.doi.org/10.1155/2017/3749157.

Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., & Yoshimori, T. (2008). An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular biology of the cell, 19(11), 4651-59. http://dx.doi.org/10.1091/mbc.e08-03-0312.

Guo, J. Y., Chen, H. Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., & Coller, H. A. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & development, 25(5), 460-470. http://dx.doi.org/10.1101/gad.2016311

Guo, J. Y., & White, E. (2016, January). Autophagy, metabolism, and cancer. In Cold Spring Harbor symposia on quantitative biology. 81, 73-78). Cold Spring Harbor Laboratory Press. http://dx.doi.org/10.1101/sqb.2016.81.030981

Guo, J. Y., Xia, B., & White, E. (2013). Autophagy-mediated tumor promotion. Cell, 155(6), 1216-19. http://dx.doi.org/10.1016/j.cell.2013.11.019

Jiang, L. C., Huang, S. Y., Zhang, D. S., Zhang, S. H., Li, W. G., Zheng, P. H., & Chen, Z. W. (2014). Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis. Brazilian Journal of Medical and Biological Research, 47(3), 252-8. https://doi.org/10.1590/1414-431X20133231

Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28-31.http://dx.doi.org/10.4161/auto.3269.

Juenemann, K., & Reits, E. A. (2012). Alternative macroautophagic pathways. International journal of cell biology, 2012. http://dx.doi.org/10.1155/2012/189794.

Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation, 18(4), 571-80. http://dx.doi.org/10.1038/cdd.2010.191.

Koo, J. S., Kim, J. W., & Yoon, J. S. (2016). Expression of autophagy and reactive oxygen species-related proteins in lacrimal gland adenoid cystic carcinoma. Yonsei medical journal, 57(2), 482-489.http://dx.doi.org/10.3349/ymj.2016.57.2.482

Levine, B., Sinha, S. C., & Kroemer, G. (2008). Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 4(5), 600-6.

Levine, B. (2006). Unraveling the role of autophagy in cancer. Autophagy, 2(2), 65-66.

Levine, B., & Yuan, J. (2006). Autophagy in cell death: an innocent convict?. The Journal of Clinical Investigation, 116(12), 3293-93.

Liang, L. Z., Ma, B., Liang, Y. J., Liu, H. C., Zheng, G. S., Zhang, T. H., & Liao, G. Q. (2012). High expression of the autophagy gene Beclin‐1 is associated with favorable prognosis for salivary gland adenoid cystic carcinoma. Journal of oral pathology & medicine, 41(8), 621-9.

Liu, B., Miyake, H., Nishikawa, M., Tei, H., & Fujisawa, M. (2015). Expression profile of autophagy-related markers in localized prostate cancer: correlation with biochemical recurrence after radical prostatectomy. Urology, 85(6), 1424-30.

Liu, J. J., Lin, M., Yu, J. Y., Liu, B., & Bao, J. K. (2011). Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer letters, 300(2), 105-14.

Luo, S., & Rubinsztein, D. C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death & Differentiation, 17(2), 268-77.

Maruyama, Y., Sou, Y. S., Kageyama, S., Takahashi, T., Ueno, T., Tanaka, K., & Ichimura, Y. (2014). LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and biophysical research communications, 446(1), 309-15.

Miracco, C., Cevenini, G., Franchi, A., Luzi, P., Cosci, E., Mourmouras, V., & Moretti, D. (2010). Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Human pathology, 41(4), 503-512. http://dx.doi.org/10.1016/j.humpath.2009.09.004

Mortezavi, A., Salemi, S., Rupp, N. J., Rüschoff, J. H., Hermanns, T., Poyet, C., & Wild, P. (2017). Negative LC3b immunoreactivity in cancer cells is an independent prognostic predictor of prostate cancer specific death. Oncotarget, 8(19), 31765. http://dx.doi.org/10.18632/oncotarget.15986

Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation, 45(6), 487-498. http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x

Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & redox signaling, 20(3), 460-473. http://dx.doi.org/10.1089/ars.2013.5371

Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., & Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-39.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].

Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular cell, 53(2), 167-78. http://dx.doi.org/10.1016/j.molcel.2013.12.014

Roy, S., & Debnath, J. (2010, December). Autophagy and tumorigenesis. In Seminars in immunopathology 32(4), 383-396). Springer-Verlag. http://dx.doi.org/10.1007/s00281-010-0213-0

Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O., & Klionsky, D. J. (2007). Potential therapeutic applications of autophagy. Nature reviews Drug discovery, 6(4), 304-12. http://dx.doi.org/10.1038/nrd2272

Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., ... & White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer discovery, 3(11), 1272-85. http://dx.doi.org/10.1158/2159-8290.cd-13-0397

Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. http://dx.doi.org/10.1038/35042675

Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., & Elazar, Z. (2010). LC3 and GATE‐16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal, 29(11), 1792-1802.http://dx.doi.org/10.1038/emboj.2010.74

White, E. (2016). Autophagy and p53. Cold Spring Harbor perspectives in medicine, 6(4), a026120.

Yang, Z., & Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology, 12(9), 814-822.http://dx.doi.org/10.1038/ncb0910-814

Yu, P., Zhang, C., Gao, C. Y., Ma, T., Zhang, H., Zhou, M. M., & Kong, L. Y. (2017). Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death. Oncotarget, 8(38), 64032.http://dx.doi.org/10.18632/oncotarget.19299

Downloads

Publicado

30/08/2020

Como Citar

SILVA, G. C. da .; MONTALLI, V. A. M. .; ARAÚJO , N. S. D. .; ARAÚJO , V. C. D. .; GOULART-FILHO , J. A. V. . Autofagia e Câncer: uma revisão da literatura. Research, Society and Development, [S. l.], v. 9, n. 9, p. e584997493, 2020. DOI: 10.33448/rsd-v9i9.7493. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7493. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde