Influence of infusion time on the physicochemical characteristics and on the content of nutraceutical bioactive compounds in mangaba leaf (Hancornia speciosa Gomes)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8557

Keywords:

Apocynaceae; Tea; Time; Phytochemicals.

Abstract

The leaves of mangabeira are popularly used in the preparation of teas and infusions for medicinal purposes. Herbal infusions have beneficial properties due to the bioactive substances that act as antioxidants. Thus, the objective of this study was to evaluate the physical-chemical characteristics and the content of nutraceutical bioactive compounds and to verify the influence of time on mango leaf infusions. The infusions were prepared in triplicate at 5 and 10 (I5 and I10) minutes, adding 1 g of vegetable material in natura in 50 mL of boiling water. Analyzes were carried out for physical-chemical characterization of fresh leaves, infusions and residues: color and browning index (I.E.); total soluble solids in ºBrix e; pH. The analyzes of the bioactive compounds were: chlorophylls, carotenoids and total phenols. In the physical-chemical analyzes, the content of total soluble solids did not vary significantly, indicating that the analyzed times extracted similar contents. I.E. remained constant, indicating that heat treatment was not associated with enzymatic activation and browning. However, the infusion time significantly affected phytochemicals. The values ​​of total chlorophyll and its fractions varied with a progressive decrease compared to leaf in natura at different infusion times, as well as total carotenoids, β-carotene and phenols, which suggests the influence of time on the amount of these compounds present in infusions, being that, I5 provided less loss of the compounds compared to I10, being able to correlate positively with the concentration of flavonoids and with the antioxidant activity.

References

ABIR. (2019). Associação Brasileira das Indústrias de Refrigerantes e de Bebidas não Alcoólicas - ABIR. Recuperado de https://abir.org.br/

Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051

Azeredo, H. M. C. de. (2004). Fundamentos de estabilidade de alimentos. EMBRAPA, p. 195. Recuperado de http://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=771609 &biblioteca=vazio&busca=autoria:%22PREGNOLATTO, N.P.%22&qFacets=autoria:%2 2PREGNOLATTO, N.P.%22&sort=&paginacao=t&paginaAtual=1

Bastos, D. H. M., Rogero, M. M., & Arêas, J. A. G. (2009). Effects of dietary bioactive compounds on obesity induced inflammation. Arquivos Brasileiros de Endocrinologia e Metabologia, 53(5), 646–656. https://doi.org/10.1590/s0004-27302009000500017

Bastos, K., Dias, C., Nascimento, Y., da Silva, M., Langassner, S., Wessjohann, L., & Tavares, J. (2017). Identification of Phenolic Compounds from Hancornia speciosa (Apocynaceae) Leaves by UHPLC Orbitrap-HRMS. Molecules, 22(1), 143. https://doi.org/10.3390/molecules22010143

Bomfim, M. P., Pace Lima, G. P., Vianelo, F., & São José, A. R. (2017, August). Caracterização dos compostos bioativos em frutas e hortaliças adquiridas no comércio de Padova - Itália. Revista Iberoamericana de Tecnología Postcosecha, 14. Recuperado de https://www.redalyc.org/articulo.oa?id=81353563003

Cardoso, L. D. M., Reis, B. D. L., Oliveira, D. D. S., & Pinheiro-Sant’Ana, H. M. (2014). Mangaba (Hancornia speciosa Gomes) from the Brazilian Cerrado: Nutritional value, carotenoids and antioxidant vitamins. Fruits, 69(2), 89–99. https://doi.org/10.1051/fruits/2013105

Cecchi, H. M. (2003). Fundamentos teóricos e práticos em análise de alimentos. Fundamentos teóricos e práticos em análise de alimentos. Editora da Unicamp. https://doi.org/10.7476/9788526814721

Chen, G. L., Chen, S. G., Zhao, Y. Y., Luo, C. X., Li, J., & Gao, Y. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150–157. https://doi.org/10.1016/j.indcrop.2014.03.018

Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., … Đurović, S. (2019). The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 271, 328–337. https://doi.org/10.1016/j.foodchem.2018.07.154

Das, P. R., Kim, Y., Hong, S. J., & Eun, J. B. (2019). Profiling of volatile and non-phenolic metabolites—Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chemistry, 296, 69–77. https://doi.org/10.1016/j.foodchem.2019.05.194

de Lima, J. P., Azevedo, L., de Souza, N. J., Nunes, E. E., & Vilas Boas, E. V. de B. (2015). First evaluation of the antimutagenic effect of mangaba fruit in vivo and its phenolic profile identification. Food Research International, 75, 216–224. https://doi.org/10.1016/j.foodres.2015.05.045

Donlao, N., & Ogawa, Y. (2019). The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT, 116, 108567. https://doi.org/10.1016/j.lwt.2019.108567

Ferreira, E. G., Melo, M. A. R. de, Menino, I. B., Sousa, M. F. de, Régis, T. K. O., & Vasconcelos, G. C. (2018). Caracterização Biométrica De Plantas E Físico-Química De Frutos De Mangabeiras Do Litoral Da Paraíba. Revista Campo do Saber (Vol. 4). Recuperado de http://periodicos.iesp.edu.br/index.php/campodosaber/article/view/143

G. Hrazdina, & Wagner, G. J. (1985). Compartmentation of plant phenolic compounds ; site of synthesis and accumulation. Annu. Proc. Phytochem. Soc. Europe, 25, 120–133. Retrieved from https://ci.nii.ac.jp/naid/10004053055

Geller, F. C., Teixeira, M. R., Pereira, A. B. D., Dourado, L. P. A., Souza, D. G., Braga, F. C., & Simões, C. M. O. (2015). Evaluation of the Wound Healing Properties of Hancornia speciosa Leaves. Phytotherapy Research, 29(12), 1887–1893. https://doi.org/10.1002/ptr.5438

Gennadios, A., Weller, C. L., Hanna, M. A., & Froning, G. W. (1996). Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61(3), 585–589. https://doi.org/10.1111/j.1365-2621.1996.tb13164.x

Goupy, P., Amiot, M. J., Richard-Forget, F., Duprat, F., Aubert, S., & Nicolas, J. (1995). Enzymatic Browning of Model Solutions and Apple Phenolic Extracts by Apple Polyphenoloxidase. Journal of Food Science, 60(3), 497–501. https://doi.org/10.1111/j.1365-2621.1995.tb09811.x

Herrera, T., Aguilera, Y., Rebollo-Hernanz, M., Bravo, E., Benítez, V., Martínez-Sáez, N., … Martín-Cabrejas, M. A. (2018). Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Science and Technology, 89, 65–73. https://doi.org/10.1016/j.lwt.2017.10.031

Ho, C., Rafi, M. M., & Ghai, G. (2010). Substâncias bioativas: nutracêuticas e tóxicas. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Química de alimentos de Fennema (4th ed., p. 900). Porto Alegre: Artmed.

Hodge, J. E. (1953). Dehydrated foods, Chemistry of Browning Reactions in Model Systems. Journal of Agricultural and Food Chemistry, 1(15), 928–943. https://doi.org/10.1021/jf60015a004

Izzo, A. A., Hoon-Kim, S., Radhakrishnan, R., & Williamson, E. M. (2016, May 1). A Critical Approach to Evaluating Clinical Efficacy, Adverse Events and Drug Interactions of Herbal Remedies. Phytotherapy Research. John Wiley and Sons Ltd. https://doi.org/10.1002/ptr.5591

Kwak, E. J., & Lim, S. I. (2004). The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids, 27(1), 85–90. https://doi.org/10.1007/s00726-004-0067-7

Lee, K. H., Lee, J. S., Kim, E. S., & Lee, H. G. (2019). Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT, 101, 138–144. https://doi.org/10.1016/j.lwt.2018.10.072

Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. In Journal of Nutrition (Vol. 134, pp. 3479–3485). Oxford Academic. https://doi.org/10.1093/jn/134.12.3479s

Magagna, F., Cordero, C., Cagliero, C., Liberto, E., Rubiolo, P., Sgorbini, B., & Bicchi, C. (2017). Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chemistry, 225, 276–287. https://doi.org/10.1016/j.foodchem.2017.01.003

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004, May 1). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition. American Society for Nutrition. https://doi.org/10.1093/ajcn/79.5.727

Palou, E., López-Malo, A., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. Journal of Food Science, 64(1), 42–45. https://doi.org/10.1111/j.1365-2621.1999.tb09857.x

Pereira, A. C., Pereira, A. B. D., Moreira, C. C. L., Botion, L. M., Lemos, V. S., Braga, F. C., & Cortes, S. F. (2015). Hancornia speciosa Gomes (Apocynaceae) as a potential anti-diabetic drug. Journal of Ethnopharmacology, 161, 30–35. https://doi.org/10.1016/j.jep.2014.11.050

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/L ic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Podadera, P., & Sabato, S. F. (2007). Radiation effect on sucrose content of inverted sugar. In International Nuclear Atlantic Conference - INAC 2007 (p. 4). Santos: Associação Brasileira De Energia Nuclear - ABEN.

Ragazzi, E., & Veronese, G. (1973). Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. Journal of Chromatography A, 77(2), 369–375. https://doi.org/10.1016/S0021-9673(00)92204-0

Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Santos, U. P. dos, Tolentino, G. S., Morais, J. S., Souza, K. D. P., Estevinho, L. M., & Santos, E. L. dos. (2018). Physicochemical characterization, microbiological quality and safety, and pharmacological potential of Hancornia speciosa gomes. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/2976985

SAPPI. (2013). Defining and Communicating Color: The CIELAB System. Recuperado de https://cdn-s3.sappi.com/s3fs-public/sappietc/Defining and Communicating Color.pdf

Silva-Junior, J. F. Da, Mota, D. M., Ledo, A. Da S., Schmitz, H., Muniz, A. V. C. Da S., & Rodrigues, R. F. de A. (2017). Mangaba: Hancornia speciosa Gomes. - Portal Embrapa. EMBRAPA, 28. Recuperado de https://www.embrapa.br/busca-de-publicacoes/-/publicacao/ 1096247/mangaba-hancornia-speciosa-gomes

Silva, G. C., Braga, F. C., Lemos, V. S., & Cortes, S. F. (2016). Potent antihypertensive effect of Hancornia speciosa leaves extract. Phytomedicine, 23(2), 214–219. https://doi.org/10.1016/j.phymed.2015.12.010

Smith, W., Mitchell, P., & Rochester, C. (1997). Serum beta carotene, alpha tocopherol, and age-related maculopathy: The blue mountains eye study. American Journal of Ophthalmology, 124(6), 838–840. https://doi.org/10.1016/S0002-9394(14)71702-7

Soto, C., Caballero, E., Pérez, E., & Zúñiga, M. E. (2014). Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food and Bioproducts Processing, 92(3), 328–333. https://doi.org/10.1016/j.fbp.2013.06.002

Teofilović, B., Grujić-Letić, N., Goločorbin-Kon, S., Stojanović, S., Vastag, G., & Gadžurić, S. (2017). Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Industrial Crops and Products, 100, 176–182. https://doi.org/10.1016/j.indcrop.2017.02.039

Published

25/09/2020

How to Cite

MORAIS, A. B. L. .; FERREIRA , D. N. .; TAVEIRA , G. S.; ANJOS, H. A. dos .; PAGANI, A. A. C. . Influence of infusion time on the physicochemical characteristics and on the content of nutraceutical bioactive compounds in mangaba leaf (Hancornia speciosa Gomes). Research, Society and Development, [S. l.], v. 9, n. 10, p. e2519108557, 2020. DOI: 10.33448/rsd-v9i10.8557. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8557. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences