Distribution of heat stroke in the Ipojuca/PE river basin, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8708

Keywords:

Climate variables; Renewable energy; Heat source; Trend lines; Temperature.

Abstract

Heat stroke is part of solar energy that spreads without the need for a material medium and is represented by the hours of the day that the solar disk remains visible on the earth's surface. The objective is to characterize the climatic conditions of insolation using the interpolation method for the area of the hydrographic basin of the Ipojuca River and its surroundings, elaborating a monthly and annual graph for the period from 1962 to 2019. The average climatological data of the total monthly and annual sunshine were generated by the simple interpolation method, using electronic spreadsheets to extract the averages values ​​of the monthly, annual, median, standard deviation, coefficient of variance, maximum and minimum absolute values. Total sunstroke is greater than the cloud coverage in the period from August to March, totaling 1861.8 hours and tenths, while in the same period, the cloud coverage is 0.45 tenths. Low cloud cover, temperature fluctuations and low or no ground cover conditions these incidences of insolation rates above normal. The importance of heat stroke is verified for purposes of applicability in the agricultural sectors, energy generations, aiming at helping industrial parks, energy distributors, agricultural sector and climatic studies that are scarce or widespread. It is observed that the deviations are positive, showing increases in the monthly and annual values, even though the straight line trends show us insignificant reductions for the period studied. The trend lines of the respective 12 months are negative and without insignificance, agreeing with the calculations of the moving averages, stating that there has been a reduction in the sunstroke in the next 9 years and, after 10 years, the insolation rates return to the level of the historical average.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2014). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. doi:10.1127/0941-2948/2013/0507

Alves. W. S. (2014). As interações espaciais e o clima urbano de Iporá - GO. Dissertação (Mestrado em Geografia), UFG/CAJ, Jataí – GO.

Bem-Gai, T., Bitan, A., Manes, A., Alpert, P., & Rubin, S. (1988). Spatial and temporal changes in rainfall frequency distribution patterns in Israel. Theor. Appl. Climatol., 61, 177-190. doi: 10.1007/s007040050062

Galvani, E. (2011). Estatística descritiva em sala de aula. In Venturi, L. A. B. Geografia: práticas de campo, laboratório e sala de aula. São Paulo: Editora Sarandi.

Holanda, R. M., Medeiros, R. M., Lorena, E. M. G., Kozmhinsky, M., Silva, V. P., & Moraes, A. S. (2019). Flutuação da insolação e nebulosidade no município de Caruaru – PE, Brasil. In Workshop Internacional sobre água no semiárido brasileiro, 3.

INMET – Instituto Nacional de Meteorologia. (1998). Atlas de Irradiação solar do Brasil. Brasília: EMC-UFSC, 58.

INMET – Instituto Nacional de Meteorologia. (2020). Normais climatológicas 1962-2019. Retrieved from https://portal.inmet.gov.br/dadoshistoricos

Katz, R. W. (1991). Towards a statistical paradigm for climate change. American Meteorological Society, 123, 1-17. doi:10.3354/CR002167

Katz, R. W., & Brown, B. G. (1992). Extreme events in changing climate: variability is more important than averages. Climate Change, 21(3), 289-302. doi: 10.1007/BF00139728

Köppen, W. (1928). Grundriss der Klimakunde: outline of climate science. Berlin: Walter de Gruyter.

Köppen, W., & Geiger, R. (1931). Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150 x 200cm.

Kozmhinsky, M., Medeiros, R. M., Holanda, R. M., & Silva, V. P. (2018). Average insolation interpolated by the krigagem method for the state of Pernambuco – Brazil. Journal of Hyperspectral Remote Sensing, 8(2), 334-344. doi: 10.29150/jhrs.v8.2.p78-84

Marengo, J. A., Schaeffer, R., Zee, D., & Pinto, H. S. (2015). Mudanças climáticas e eventos extremos no Brasil. Retrieved from http://www.fbds.org.br/cop15/FBDS_MudancasClimaticas.pdf

Medeiros, R. M., Filho, M. C., França, M. V., Holanda, R. M., Piscoya, V. C., Rocha, J. S., Piscoya, T. O. F., Cunha, A. L. X., Moreira, G. R., Costa, M. L. L., & Araújo Filho, R. N. (2020). Fluctuations in Insolation during 1962 - 2019 for Municipalities in Pernambuco, Brazil. JEAI, 42(7), 113-123. doi: 10.9734/jeai/2020/v42i730560

Medeiros, R. M. (2018). Insolação decadal para Recife – PE, Brasil. Rev. Geogr. Acadêmica, 12(2), 124-137. Retrieved from https://revista.ufrr.br/rga/article/view/5269

Medeiros, R. M., Holanda, R. M., Viana, M. A., & Silva, V. P. (2018), Climate classification in Köppen model for the state of Pernambuco - Brazil. Revista de Geografia (Recife), 35(3), 219-234. Retrieved from https://periodicos.ufpe.br/revistas/revistageografia/article/view/229388

Pereira, A.S., Shitsuka, D. M., Parreira, F.J. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Sansigolo, C. A., & Kayano, M. T. (2010). Trends of seasonal maximum and minimum temperatures and precipitation in Southern Brazil for the 1913–2006 periods. Theor. Appl. Climatol., 101, 209-216. doi: 10.1007/s00704-010-0270-2

Santos, R. M. B. (2014). Aplicação do método de krigagem para estimar campos de radiação solar: um estudo para o nordeste do Brasil. Dissertação (Mestrado em Meteorologia), INPE, São José dos Campos.

Silva, G. J. F., & Severo, T. E. A. (2012). Potencial/aproveitamento de energia solar e eólica no semiárido nordestino: um estudo de caso em Juazeiro – BA nos anos de 2000 a 2009. Revista Brasileira de Geografia Física, 5(3), 586-599. doi: 10.26848/rbgf.v5.3.p586-599

Silva, V. M. A., Medeiros, R. M., Santos, D. C., & Gomes Filho, M. F. (2013). Variabilidade pluviométrica entre regimes diferenciados de precipitação no Estado do Piauí. Revista Brasileira de Geografia Física, 6(5), 1463-1475. Retrieved from https://periodicos.ufpe.br/revistas/rbgfe/article/view/233118/27033

Software R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Retrieved from http://www.R-project.org.

Souza, J. D., Silva, B. B., & Ceballos, J. C. (2008). Estimativa da radiação solar global à superfície usando um modelo estocástico: caso sem nuvens. Revista Brasileira de Geofísica, 26(1), 31- 44. doi:10.1590/S0102-261X2008000100003

Tubelis, A., & Nascimento, F. J. S. (1988). Meteorologia descritiva: fundamentos e aplicações brasileiras. São Paulo: Nobel.

Downloads

Published

08/10/2020

How to Cite

CUNHA FILHO, M.; MEDEIROS, R. M. de .; CAVALCANTI, N. L. de L.; PISCOYA, V. C. .; HOLANDA, R. M. de .; FRANÇA, M. V. de .; ARAÚJO , W. R. de .; CUNHA, A. L. X. .; MOREIRA, G. R. .; BRITO, C. C. R. de .; COSTA, M. L. L. .; ARAÚJO FILHO, R. N. de .; CORREA, M. M. .; ROCHA, J. S. .; FREITAS, J. R. de .; GUERRA, S. M. S. .; PISCOYA, T. O. F. Distribution of heat stroke in the Ipojuca/PE river basin, Brazil. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5599108708, 2020. DOI: 10.33448/rsd-v9i10.8708. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8708. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings