Potassium phosphite and its implications for the control of Phytophthora plurivora in beech

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8824

Keywords:

Alternative control; Phytopathology; Forest specie.

Abstract

Beech (Fagus sylvatica) is one of the main forest species in Europe and one of the main problems in the cultivation of these species is the occurrence of disease caused by Phytophthora plurivora. Studies in the literature shows phosphites as a good alternative for the control of diseases caused by oomycetes. However, the mode of action is still being studied. This work aimed to evaluate the commercial product based on potassium phosphite Phytogard® on the control of disease caused by P. plurivora in beech plants and to understand the possible mode of action of the product on this pathogen. Beech plants were sprayed with different concentrations of Phytogard® and then inoculated with the pathogen. We evaluated the diseases incidence, water uptake and the amount of pathogens DNA in the host roots. In in vitro experiments, mycelial growth, production of fresh mycelium and zoospores by this pathogen were determined. We also evaluated the electrolyte leakage, lipid peroxidation and the β-1,3-glucanase activity in the mycelium. It was also evaluated the hyphae morphology from mycelium treated or not with Phytogard® by using scanning electron microscopy. The results showed that in all concentrations of Phytogard® preventively controls diseases caused by P. plurivora in beech plants. The Phytogard® inhibited mycelial growth and zoospore production by P. plurivora. Furthermore, the product modified the hyphae morphology, changed membrane permeability and mycelium cell wall synthesis in the pathogens.

References

Abeles, F. B. & Foence, L. E. (1970). Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris. Plant Physiology, 45, 305-400.

Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150, 2029-2035.

Agrios, G. N. (2005). Plant Pathology. (5a ed.) San Diego: Elsevier Academic Press.

Alexopoulos, C. J., Mims, C. W. & Blackwell, M. (1996). Introductory mycology. (4a ed.) New York: John Wiley.

Bedendo, I. P. (2011). Podridões de raiz e colo. In: Amorim, L.; Rezende, J.A.M. & Bergamin Filho (Ed.). Manual de Fitopatologia (pp. 443-451). São Paulo: Editora Agronômica Ceres.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-257.

Brasier, C. M. (2009). Phytophthora biodiversity: how many Phytophthora species are

there? In: Goheen, E. M. & Frankel, S. J. (Ed.). Phytophthoras in Forests and Natural Ecosystems (pp. 101-115). General Technical Report, 221. Albany: USDA Forest Service.

Cakmak, I. & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean. Physiology Plantarum, 83, 463-468.

Carswell, S. C., Grant, B. R., Theodorou, M. E., Harris, J., Niere, J. O. & Plaxton, W. C. (1996). The fungicide phosphonate disrupts the phosphate starvation response in Brassica nigra seedlings. Plant Physiology, 110, 105-110.

Cohen, M. D. & Coffey, M. D. (1986). Systemic fungicides and the control of oomycetes. Annual Review Phytopathology, 24, 311-338.

Dalio, R. J. D., Ribeiro Junior, P. M., Resende, M. L. V., Silva, A. C., Blumer, S., Pereira, V. F., Osswald, W. & Pascholati, S. F. (2012). O triplo modo de ação dos fosfitos em plantas. In: Luz WC (Org.). Revisão Anual de Patologia de Plantas – RAPP, 20 (pp. 206-242). Passo Fundo: Gráfica e Editora Padre Berthier dos Missionários da Sagrada Família.

Dalio, R. J. D., Fleischmann, F., Humez, M. & Wolfgang, O. (2014). Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. Plos One, 9 (1).

Dercks, W. & Buchenauer, H. (1987). Comparative studies on the mode of action of aluminium ethyl phosphite in four Phytophthora species. Crop Protection, 6, 82-89.

Dunstan, R. H., Smillie, R. H. & Grant, B. R. (1990). The effects of sub-toxic levels of phosphonate on the metabolism and potential virulence factors of Phytophthora palmivora. Physiological and Molecular Plant Pathology, 36, 205-220.

Farmer, E. E. & Mueller, M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology, 64, 429-450.

Frac, Fungicide resistance action committee (2019). Fungal control agents sorted by cross resistance pattern and mode of action. Recuperado de https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2019.pdf?sfvrsn=98ff4b9a_2.

Guest, D. & Grant, B. R. (1991). The complex action of phosphonates as antifungal agents. Biological Review, 66, 159-187.

Hardy, G. E. S., Barret, S. & Shearer, B. L. (2001). The future of phosphate as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30, 133-139.

Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry Biophysics, 125, 189-198.

Jung, T., Hudler, G., Jensen-Tracy, S., Griffiths, H., Fleischmann, F. & Osswald, W. (2005). Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist, 19, 159-166.

Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy. Journal of Cell Biology, 27, 137-138A.

King, M., Reeve, W., Van der Hoek, M. B., Wiliams, N., Mccomb, J., O’Brien, P. A. & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics & Genomics, 284, 425-435.

Leite, N. de O. G., Chagas, A. B., Costa, M. L. A. da, Farias, L. R. A., Cunha, A. L., Rocha, M. A. do N., Nascimento, C. M. A. do, Rocha Júnior, E. F. da, Maranhão, T. L. G. Q., Santos, A. F., dos & Silva, J. V. (2020). Influências das interações Patógeno- Hospedeiro- Meio Ambiente nas funções Biológicas das plantas. Research, Society and Development, 9 (10), e469108126. https://doi.org/10.33448/rsd-v9i10.8126.

Lenardon, M., Munro, C. A. & Gow, N. A. R. (2010). Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 13, 416-423.

Lüttringer, M., & De Cormis, L. (1985). Absorption, dégradation et transport du phosétyl-Al et de son metabolite chez la tomate. Agronomie, 5, 423-430.

Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews, 61 (1), 17-32.

Mills, A. A. S., Platt, H. W., & Hurta, R. A. R. (2004). Effect of salt compounds on mycelia growth, sporulation and spore germination of various potato pathogens. Postharvest Biology and Technology, 34, 341-350.

Orbovic, V., Syverstsen, J. P., Bright, D., Van Clief, D. L. & Graham, J. H. (2008). Citrus seedling growth and susceptibility to root rot as affected by phosphite and phosphate. Journal Plant Nutrition, 31, 774-787.

Packham, J. R., Thomas P. A., Atkinson, M. D. & Degen, T. (2012). Biological flora of the british isles: Fagus sylvatica. Journal of Ecology, 100, 1557-1608.

Roma, R. C. C. (2013). Fosfito de potássio no controle de doenças pós-colheita em bagas de uva ´Itália´ e possíveis mecanismos de ação à Rhizopus stolonifer. Tese de doutorado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP.

Russell, P. E. (2002). Sensitivity baselines in fungicide resistance research and management. Cambridge UK: FRAC.

Schlink, K. (2010). Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Functional & Integrative Genomics, 10, 253-264.

Schroetter, S., Angeles-Wedler, D., Kreuzig, R. & Schnug, E. (2006). Effects of phosphite on phosphorus supply and growth and growth of corn (Zea mays). Landbauforschung Volkenrodxe, 56, 87-99.

Schwan-Estrada, K. R. F., Stangarlin, J. R. & Pascholati, S. F. (2008). Mecanismos bioquímicos de defesa vegetal. In: Pascholati, S. F., Leite, B., Stangarlin, J. R. & Cia, P. Interação planta-patógeno: fisiologia, bioquímica e biologia molecular (pp. 227-248). Piracicaba: FEALQ.

Shearer, B. L. & Fairman, R. G. (2007). A stem injection of phosphite protects Banksia species and Eucalyptus marginata from Phytophthora cinnamomi for at least four years. Australasian Plant Pathology, 36, 78-86.

Stangarlin, J. R. & Leite, B. (2008). Alterações fisiológicas na suscetibilidade. In: Pascholati, S.F.; Leite, B.; Stangarlin, J.R.; Cia, P. Interação planta-patógeno: fisiologia, bioquímica e biologia molecular (pp. 117-226). Piracicaba: FEALQ.

Walters, D. R. & Bingham, I (2007). Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Annual Applied Biology, 151, 307-324.

Weiland, J. E., Nelson, A. H. & Hudler G. W. (2010). Agressiveness of Phytophthora cactorum, P. citricola I, and P. plurivora from European beech. Plant Disease, 94, 1009-1014.

Wilkinson, C. J., Holmes, J. M., Dell, B., Tynan, K. M., Mccomb, J. A., Shearer, B. L., Colquhoun, I. J. & Hardy, G. E. S. (2001). Effect of phosphite on in planta zoospore production of Phytophthora cinnamomi. Plant Pathology, 5, 587-593.

Published

08/10/2020

How to Cite

REZENDE, D. C.; BRANDÃO, D. F. R.; BRAND , S. C.; BLUMER, S.; PASCHOLATI, S. F.; MAFRA, N. M. Potassium phosphite and its implications for the control of Phytophthora plurivora in beech. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5629108824, 2020. DOI: 10.33448/rsd-v9i10.8824. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8824. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences