Antitumor activity of Apocynaceae species used in Amazon traditional medicine
DOI:
https://doi.org/10.33448/rsd-v9i10.9241Keywords:
Apocynaceae; Cancer; Phytochemistry; Cytotoxicity.Abstract
This study reviews the use of Apocynaceae species for cancer and tumor treatment in the Amazon. Databases and books were searched for ethnobotanical and phytochemical evaluations of the cytotoxic and anticancer activities of Apocynaceae species. The literature reports the use of several Amazonian species, such as Asclepias curassavica, Himatanthus articulates, and Macoubea sprucei, in treating tumors and cancers. Phytochemical studies on A. curassavica and H. articulatus have shown their chemical compositions to be variable, possessing cardenolides, iridoids, flavonoids, steroids, and terpenes. Most of the species have not been subjected to in vitro experiments for anticancer activity, and the evaluated species showed moderate-to-weak responses or were inactive. Other studies have shown that iridoids, flavonoids, and steroids are promising as antitumor treatments. The following action mechanisms have been attributed to iridoids: topoisomerase I-DNA complex stabilization, cellular cytoskeleton alteration, and induction of apoptosis. The activities of flavonoids have been reported to include apoptosis induction in liver tumor cells. Some authors suggest that flavonoids reduce oxidative stress cellular response which reduces mitochondrial dysfunction and cell death. In summary, Apocynaceae species appear to be promising as a source for antitumor agents; however, further studies are required to confirm their antitumor activities and to better elucidate the underlying mechanisms involved.
References
Abdel-Karder, M. S., Wisse, J., Evans, J. W., van-der.Werff, H. & Kingston, D. G. I. (1997). Bioactive iridoids and new lignan from Allamanda carthatica and Himatanthus falax from the Suriname rainforest. J Nat Prod, 60(12), 1924-1927. https://doi.org/10.1021/np970253e.
Agra, M. F., Freitas, P. F. & Barbosa-Filho, J. M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian Journal of Pharmacognosy, 17(1), 114-140. https://doi.org/10.1590/S0102-695X2007000100021
Agra, M. F., Silva, K. N., Basílio, I. J. L. D., Freitas, P. F, Barbosa-Filho, J. M. (2008). Survey of medicinal plants used in the region Northeast of Brazil. Brazilian Journal of Pharmacognosy, 18(3), 472-508. https://doi.org/10.1590/S0102-695X2008000300023.
Aimi, N., Uchida, N., Ohya, N., Hosokawa, H., Takayama, H., Sakai, S., Mendonza, L. A., Polz, L. & Stöckigt, J.(1991). Novel indole alkaloids from cell suspension cultures of Aspidosperma quebracho blanco Schlecht. Tetrahedron Lett, 32(37), 4949-4952.
Allen, J. R. F. & Holmstedt, B. R. (1980). The simple β-carboline alkaloids, Phytochemistry, 19(8), 1573-1582. https://doi.org/10.1016/S0031-9422(00)83773-5
Al-Snafi, A. E. (2015). Chemical constituents and pharmacological effects of Asclepias curassavica - A review. Asian Journal of Pharmaceutical Sciences, 5(1), 83-87. Retrieved from https://www.academia.edu/11581129/CHEMICAL_CONSTITUENTS_AND_PHARMACOLOGICAL_EFFECTS_OF_ASCLEPIAS_CURASSAVICA_A_REVIEW.
Amaro, M. S., Filho, M. S., Guimarães, R. M. & Teófilo, E. M. (2006). Morfologia de frutos, sementes e de plântulas de janaguba (Himatanthus drasticus (Mart.) Plumel - Apocynaceae). Rev Bras Sementes, 28(1), 63-71. https://doi.org/10.1590/S0101-31222006000100009
Ariazi, E. A., Clark, G. M., & Mertz, J. E. (2002). Estrogen-related receptor a and estrogen-related receptor g associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer research, 62(22), 6510-6518. Retrieved from https://cancerres.aacrjournals.org/content/62/22/6510.
Avila, M. A., Velasco, J. A., Cansado, J. & Notario, V. (1994). Quercetin mediates the down regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer research, 54(9), 2424-2428. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8162591/.
Barreto, A. S., Carvalho, M. G., Nery, I. A., Gonzaga, L. & Kaplan,cM. A. C. (1998). Chemical constituents from Himatanthus articulata. J. Braz. Chem. Soc, 9(5), 430-434. https://doi.org/10.1590/S0103-50531998000500004.
Behling, E. B., Sendão, M. C., Francescato, H. D. C., Antunes, L. M. G. & Bianchi, M. L. P. (2004). Flavonóide quercetina: aspectos gerais e ações biológicas. Alimentos e Nutrição, 15(3), 285-292. Retrieved from http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/viewFile/89/102.
Boots, A. W., Balk, J. M., Bast, A. & Haenen, R. M. M. (2005) The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity. Biochem Biophys Res Commun, 338(2), 923-929. doi: 10.1016/j.bbrc.2005.10.031.
Boots, A. W., Kubben, N., Haenen, G. R. M. M. & Bast, A. (2003). Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Commun, 308(3), 560-565. doi: 10.1016/s0006-291x(03)01438-4.
Boots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, W. M., Bast, A. & Haenen, G. R. M. M. (2007).The quercetin paradox. Toxicol Appl Pharmacol, 222(1), 89-96. doi: 10.1016/j.taap.2007.04.004.
Brandão, H. N., David, J. P., Couto, R. D., nascimento, J. A. P. & David, J. M. (2010). Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. Quim Nova, 33(6), 1359-1369. doi.org/10.1590/S0100-40422010000600026.
Brandão, M. G. L., Cosenza, G. P., Moreira, R. A. & Monte-Mor, R. L. M. (2006). Medicinal plants and other botanical products from the Brazilian Official Pharmacopoeia. Rev Bras Farmacogn, 16(3), 408-420. http://dx.doi.org/10.1590/S0102-695X2006000300020
Cavallini, A., Notarnicola, M., Giannini, R., Montemurro, S., Lorusso, D., Visconti, A., Minervini, F. & Caruso, M. G. (2005). Oestrogen receptor-related receptor alpha (ERRα) and oestrogen receptors (ERα and ERβ) exhibit different gene expression in human colorectal tumour progression. Eur J Cancer, 41(10), 1487-1494. doi: https://doi.org/10.1016/j.ejca.2005.04.008.
Chang, Y. C., Chou, F. P., Huang, H. P., Hsu, J. D. & Wang, C. J. (2004). Inhibition of cell cycle progression by penta-acetyl geniposide in rat C6 glioma cells. Toxicol Appl Pharmacol, 198(1), 11-20. https://doi.org/10.1016/j.taap.2004.03.004.
Cheung, C. P., Yu, S., Wong, K. B., Chan, L. W., Lai, F. M. M., Wang, X., Suetsugi, M., Chen, S. & Chan, F. L. (2004). Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues. J Clin Endocrinol Metab, 90(3), 1830-1844. doi: 10.1210/jc.2004-1421.
Chierrito, T. P., Aguiar, A. C. C., Andrade, I. M., Ceravolo, I. P., Gonçalves, R. A. C., Oliveira, A. J. B. & Krettli, A. U. (2014). Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malar J, 13(142), 2-10. Retrieved from http://www.malariajournal.com/content/13/1/142
CHOI, E. J. & AHN, W. S. (2008). Kaempferol induced the apopitosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract, 2(4), 322-325. doi: 10.4162/nrp.2008.2.4.322.
Choi, E. J. & Ahn, W. S. (2008). Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB- 453 cells. Nutr. Res. Pract, 2(4), 322-325. doi: 10.4162/nrp.2008.2.4.322.
Cragg, g. m. & Newman, D. J. (2005). Plants as a source of anti-cancer agents, J Ethnopharmacol, 100(1-2), 72-79. doi: 10.1016/j.jep.2005.05.011.
Elia, G., Amici, C., Rossi, A. & Santoro, M. G. (1996). Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer research, 56(1), 10-217. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8548766/.
El-Sayed, A., Handy, G. A. & Cordell, G. A. (1980). Catharanthus alkaloids XXIII. 21'-oxo-leurosine from Catharanthus roseus (Apocynaceae). J Nat Prod, 43(4), 157-161. https://doi.org/10.1021/np50007a016
Endo, Y., Hayashi, H., Sato, T., Moruno, M., Ohta, T. & Nozoe, S. (1994). Confluentic acid and 2'-O-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus sucuuba. Chem. Pharm. Bull, 42(6), 1198-201. doi: 10.1248/cpb.42.1198.
Endress, M. E., Liede-Schumann S. & Meve, U. (2014). An updated classification for Apocynaceae. Phytotaxa, 159(3), 175-194. Retrieved from https://www.biotaxa.org/Phytotaxa/article/view/phytotaxa.159.3.2/0.
Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., Pinti, M., Fernandez, M. I. G., Cooper, E. L. & Cossarizza, A. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res, 39(11), 1249-1258. doi: 10.1080/10715760500306935.
Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., Takats, P. G., Anderson, D., Baker, J. & Kerr, D. (1996). Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin cancer res, 2(4), 659-668. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9816216/.
Flora do Brasil 2020 em construção (2017). Jardim Botânico do Rio de Janeiro, "specimen of Asclépias curassavica. Retrieved from http://floradobrasil.jbrj.gov.br/
Galvéz, M., Martin-Cordero, C. & Ayuso, M. J. (2005). Iridoids as DNA topoisomerase I poisons. J Enzyme Inhib Med Chem, 20(4), 389-392. https://doi.org/10.1080/14756360500141879.
Gibellini, L., Pinti, M., Nasi, M., Montagna, J. P., Biasi, S. D. Toat, E., Bertoncelli, L., Cooper, E. L. & Cossarizza, A. (2011). Quercetin and Cancer Chemoprevention. Evid Based Complement Alternat Med, 2011 591356. doi: 10.1093/ecam/neq053.
Hall, E. J. (1997). Etiology of cancer: physical factors. In: V.T DeVita Junior; S Hellman, S.A Rosenberg, eds. Principles & Practice of Oncology. 5. ed. Philadelphia: Lippincortt- Raven, 203-218.
Hamdi, H. K. & Castellon, R. (2005). Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun, 334(3), 769-778. https://doi.org/10.1016/j.bbrc.2005.06.161.
Hanahan, D & Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144 (5), 646-74. doi: 10.1016/j.cell.2011.02.013.
Hanahan, D., & Weinberg, L. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. doi: 10.1016/s0092-8674(00)81683-9. .
Hansen, R. K., Oesterreich, S., Lemieux, P., Sarge, K. D. & Fuqua, S. A. W. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun, 239(3), 851-856.
https://doi.org/10.1006/bbrc.1997.7572.
Hartwell, J. L. (1982). Plants used against cancer. Lawrence, MA: Quarterman publication, 34(4), 438-439.
Henrique, M. C., Nunomura, S. M. & Pohlit, A. M. (2010). Alcalóides indólicos de cascas de Aspidosperma vargasii e A. Desmanthum. Quim Nova, 33(2), 284-287. https://doi.org/10.1590/S0100-40422010000200010.
Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucinerich interaction motif within PGC-1alpha. J Biol Chem, 277(43), 40265-40274. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9210&rep=rep1&type=pdf.
Kamei, Y., Ohizumi, H., Fujitani, Y., Nemoto, T., Tanaka, T., Takahashi, N., Kawada, T., Miyoshi, M., Ezaki, O. & Kakizuka, A. (2003). PPAR gamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A, 100(21), 12378-12383. doi: 10.1073/pnas.2135217100.
Kardono, L. B., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia. J Nat Prod, 54(5), 1360-1367. doi: 10.1021/np50077a020..
Kim, G. N. & Jang, H. D. (2009). Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in hepg2 cells. Natural Compounds and Their Role in Apoptotic Cell Signaling Pathways, 1171,530-537. doi: 10.1111/j.1749-6632.2009.04690.x.
Kim, H. K., Park, H. R., Lee, J., Chung, T. S., Chung, H. & Chung, J. (2007). Down-regulation of iNOS and TNF-α expression by kaempferol via NF-ᶄB inactivation in aged rat gingival tissues. Biogerontology, 8(4), 399-408. Retrieved from https://www.semanticscholar.org/paper/Down-regulation-of-iNOS-and-TNF-alpha-expression-by-Kim-Park/91ede4414a1c25b710907fc34b8097540445b8d0.
Kim, S. H. & Choi, K. C. (2013). Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res, 29(4), 229-234. doi: 10.5487/TR.2013.29.4.229.
Klohs, W. D., Fry, D. W. & Kraker, A. J. (1997). Inhibitors of tyrosine kinase. Curr Opin Oncol, 9(6), 562-568. doi: 10.1097/00001622-199711000-00012.
Koishi, M., Hosokawa, N., Sato, M., Nakai, A., Hirayoshi, K., Hiraoka, M., Abe, M. & Nagata, K. (1992). Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Cancer research, 83(11), 1216-1222. doi: 10.1111/j.1349-7006.1992.tb02748.x.
Kumar, A., Patil, D., Rajamohanan, P. R. & AHMAD, A. (2013). Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 8(9), 1-10. https://doi.org/10.1371/journal.pone.0071805
Kuo, W. H., Chou, F. P., Young, S. C., Chang, Y. C. & Wang, C. J. (2005). Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes. Toxicol Appl Pharmacol, 208(2), 155-62. https://doi.org/10.1016/j.taap.2005.02.013.
Kupchan, S. M., Knox, J. R., Kelsey, J. E. & Renauld, J. A. S. (1964). Calotropin, a cytotoxic principle isolated from Asclepias curassavica L. Science, 146(3652) 1685-1686. DOI: 10.1126/science.146.3652.1685.
Lamson, D. W. & Brignall, M. S. (2000). Antioxidants and Cancer III: Quercetin. Altern Med Rev, 5(3), 196-208. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10869101/.
Laphookhieo, S., Maneerat, W. & Koysomboon, S. (2009). Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense. Molecules, 14(4), 1389-1395. doi: 10.3390/molecules14041389.
Li, C., Zhao, Y., Yang, D., Yu, Y., Guo, H., Zhao, Z., Zhang, B. & Yin, X. (2014). Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem Cell Biol, 93(1), 16-27. https://doi.org/10.1139/bcb-2014-0067
Li, J. Z., Liu, H. Y., Lin, I. J., Hao, X. J., Ni, W. & Chen, C. X. (2008). Six new C21 steroidal glycosides from Asclepias curassavica L. Steroids, 73(6), 594-600. https://doi.org/10.1016/j.steroids.2008.01.015.
Li, J. Z., Qing, C. & and Chen, C. X. "Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica", Bioorg Med Chem Lett, vol. 19, no. 7, pp. 1956-1959, 2009.
Lorenzi, H. & Souza, H. M. S. (2008) Plantas Ornamentais no Brasil: Arbutivas, Herbaceas e Trepadeiras, Nova Odessa, SP: Editora Plantarum, 3ed.
Lübeck, W. (2001). O Poder Terapêutico do Ipê Roxo – a árvore divina dos xamãs da América do Sul. 1ed. São Paulo: Madras.
Luo, H., Rankin, G. O., Li, Z., DePriest, L. & Chen, Y. C. (2011). Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem, 128(2), 513-519. doi: 10.1016/j.foodchem.2011.03.073.
Luo, H., Rankin, Rankin, G. O., Liu, L., Daddysman, M. K., Jiang, B. H. & Chen, Y. C. (2009). Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer, 61(4), 554-563. doi: 10.1080/01635580802666281.
Mena-Rejon, G., Caamal-Fuentes, E., Cantillo-Ciau, Z., Cedillo-Rivera, R., Flores-Guido, J. & Moo-Puc, R. In vitro cytotoxic activity of nine plants used in Mayan traditional medicine. J Ethnopharmacol, 121(3), 462-465. doi: 10.1016/j.jep.2008.11.012.
Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E. & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med, 26(1-2), 107-116. doi: 10.1016/s0891-5849(98)00167-1.
Milliken, W. (1997). Traditional antimalarial medicine in Roraima, Brazil. Econ Bot, 51(3), 212-237. Retrieved from. https://link.springer.com/article/10.1007/BF02862091.
Moreno, P. R. H., Heijden, R. &. Verpoorte, R. (1995). Cell and tissue cultures of Catharanthus roseus: A literature survey. Plant Cell Tissue Organ Cult, 42(1), 1-25. Retrieved from https://link.springer.com/article/10.1007/BF00037677.
Mousinho, K. C., Oliveira, C. C., Ferreira, J. R. O., Carvalho, A. A., Magalhães, H. I. F., Bezerra, D. P., Alves, A. P. N. N., Costa-Lotufo, L. V., Pessoa, C., Matos, M. P. V., Ramos, M. V. & Moraes, M. O. (2011). Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel – Apocynaceae. J Ethnopharmacol, 137(1), 421-426. doi: 10.1016/j.jep.2011.04.073.
Murakami, A., Ashida, H. & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Lett, 269(2), 315-325. doi:10.1016/j.canlet.2008.03.046.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. Retrieved from https://www.nature.com/articles/35002501.
Nazar, n., Goyder, D. J., Clarkson, J. J., Mahmood, T. & Chase, M. W. (2013) The taxonomy and systematics of Apocynaceae: where we stand in 2012. Biol J Linn Soc Lond, 171(3), 482-490. https://doi.org/10.1111/boj.12005.
Neto, C. C., Owens, C. W., Langfield, R. D., Comeau, A. B., Onge, J. S., Vaisberg, A. J. & Hammond, G. B. (2002). Antibacterial activity of some medicinal plants from the Callejon de Huaylas. J Ethnopharmacol, 79(1), 133-138. https://doi.org/10.1016/S0378-8741(01)00398-1.
Newman, D. J., Cragg, G. M. & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981-2002, J Nat Prod, 66(7), 1022-1037.doi: 10.1021/np030096l.
Nguyen, T. T. T., Tran, E., Ong, C. K., Lee, S. K., Do, P. T., Huynh, T. T., Lee, J. J., Tan, Y., Ong, C. S & Huynh, H. (2003). Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells Is mediated by activation of MEK-MAPK, J Cell Physiol, 197(1), 110-121. doi: 10.1002/jcp.10340.
Oesterreich, S., Hilsenbeck, S. G., Ciocca, D. R., Allred, D. C., Clark, G. M., Chamness, G. C., Osborne, C. K. & Fuqua, S. A. The small heat shock protein HSP27 is not an independent prognostic mark in axillary lymph node-negative brest cancer patients. Clin Cancer Res, 2(7), 1199-1206. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9816288/.
Oliveira, V. B., Freitas, M. S. M., Mathias, L., Braz-Filho, R. & Vieira, I. J. C. (2009). Atividade biológica e alcalóides indólicos do gênero Aspidosperma (Apocynaceae): uma revisão. Rev Bras Pl Med Botucatu, 11(1), 92-99. http://dx.doi.org/10.1590/S1516-05722009000100015
Pang, J.L., Ricupero, D. A., Huang, S. Fatma, N., Singh, D. P., Romero, J. R. & Chattopadhyay, N. (2006). Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem Pharmacol, 71(6), 818-826. doi: 10.1016/j.bcp.2005.12.023.
Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H. K. & Yang, C. H. (2005). Quercetin, a potent inhibitor against b-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun, 328(1), 227-234. https://doi.org/10.1016/j.bbrc.2004.12.151.
Patnaik, G. K. & Köhler, E. (1978). Pharmacological investigation on asclepin--a new cardenolide from Asclepias curassavica. Part II. Comparative studies on the inotropic and toxic effects of asclepin, g-strophantin, digoxin and digitoxin. Arzneimittelforschung, 28(6), 1368-1372, 1978. Retrieved from https://pubmed.ncbi.nlm.nih.gov/380581/.
Peng, C. H., Tseng, T. H., Huang, C. N., Hsu, S. P. & Wang, C. J. (2005) Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction. Toxicol Appl Pharmacol, 202(2), 172-179. doi: 10.1016/j.taap.2004.06.016.
Perdue, G. P. &. Blomster, R. N. (1978). South American plants III: Isolation of fulvoplumierin from Himatanthus sucuuba (M. Arg.) Woodson (apocynaceae). Brazilian Journal of Pharmaceutical Sciences, 67(9), 1322-1323. https://doi.org/10.1002/jps.2600670936
Pereira, A. S., Shitsuka, D. M., Pereira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf
Pereira, A. S. S., Simões, A. O. & Santos, J. U. M. Taxonomy of Aspidosperma Mart. (Apocynaceae, Rauvolfioideae) in the State of Pará, Northern Brazi. Biota Neotrop, 16(2), 1-23. http://dx.doi.org/10.1590/1676-0611-BN-2015-0080
Pereira, M. M., Jácome, R. L. R. P., Alcântara, A. F. C., Alves, R. B. & Raslan, D. S. (2007). Alcalóides indólicos isolados de espécies do gênero Aspidosperma (Apocynaceae). Quim Nova, 30(4), 970-983. https://doi.org/10.1590/S0100-40422007000400037.
Pungitore, C. R., Ayub, M. J., García, M., Borkowski, E. J., Sosa, M. E., Ciuffo, C., Giordano, O. S. & Tonn, C. E. (2004). Iridoids as allelochemicals and DNA polymerases inhibitors. J. Nat. Prod, 67(3), 357-361. https://doi.org/10.1021/np030238b.
Quinet, C. G. P. & Andreata, R. H. P. (2005). Estudo taxonômico e morfológico das espécies de Apocynaceae Adans. na reserva Rio das Pedras, Município de Mangaratiba, Rio de Janeiro, Brasil. Rev Bras Bot; 56, 13-74. Retrieved from http://www.anchietano.unisinos.br/publicacoes/botanica/botanica56/a02.pdf.
Ranelletti, F. O., Ricci, R., Larocca, L. M., Maggiano, N., Capelli, A., Scambia, G., Benedetti-Panici, P., Mancuso, S., Sumi, C. & Piantelli, M. (1992). Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer, 50(3), 486-492. doi: 10.1002/ijc.2910500326.
Rebouças, S. O., Grivicich, I., Santos, M. S., Rodrigues, P., Gomes, M. D., Oliveira, S. Q., Silva, J & Ferraz, A. B. F. (2011). Antiproliferative effect of a traditional remedy,Himatanthus articulates bark, on human cancer cell lines. J Ethnopharmacol, 137(1), 926-929. doi: 10.1016/j.jep.2011.06.006.
Santos, A. C. B., Silva, M. A. P., Santos, M. A. F. & Leite, T. R. (2013). Levantamento etnobotânico, químico e farmacológico de espécies de Apocynaceae Juss. ocorrentes no Brasil. Brazilian journal of medicinal plants, 15(3), 442-458. https://doi.org/10.1590/S1516-05722013000300019
Scambia, G., Ranelletti, F. O., Panici, P. B., Piantelli, M., Vincenzo, R., Ferrandina, G., Bonanno, G., Capelli, A. & Maancuso, S. (1993). Quercetin induces type-II estrogen-binding sites in estrogen-receptor-negative (MDA-MB231) and estrogen-receptor-positive (MCF-7) human breast-cancer cell lines. Int J Cancer, 54(3), 462-466. doi: 10.1002/ijc.2910540318.
Serra, M., Shanley, P., Melo, T., Fantini, A., Medina, G., &. Vieira, P. From the forest to the consumer: the ecology, local management and trade of amapá amargoso Parahancornia fasciculata (Poir) Benoist in the state of Pará. Recent developments and case studies. In: Albuquerque, U. P., Hanazaki. N. eds. (2010) Recent developments and case studies in ethnobotany. Recife: Sociedade Brasileira de Etnobiologia/Núcleo de Publicações em Ecologia e Etnobotânica Aplicada, 213-231.
Shi, L. M., Myers, T. G., Fan, Y., O’Connor, P. M., Paull, K. D., Friende, S. H. & Weinstein, J. N. (1998). Mining the national cancer institute anticancer drug discovery database: Cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol Pharmacol, 53(2), 241-251. doi: 10.1124/mol.53.2.241.
Siegelin, M. D., Reuss, D. E., Habel, A., Herold-Mende, C. & Deimling, A. (2008). The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of surviving. Mol Cancer Ther, 7(11), 3566-3574. doi: 10.1158/1535-7163.MCT-08-0236.
Silva, J. R. A., Amaral, A. C. F., Silveira, C. V., Rezende, C. M. & Pinto, A. C. (2007). Quantitative determination by HPLC of irioids in the bark and latex of Himatanthus sucuuba. Acta Amazon, 37(1), 119-122. https://doi.org/10.1590/S0044-59672007000100014.
Silva, J. R. A., Rezende, C. M., Pinto, A. C., Pinheiro, M. L. B., Cordeiro, M. C., Tamborini, E., Young, C. M. & Bolzani, V. S. (1998). Ésteres Triterpênicos de Himatanthus sucuuba (Spruce) Woodson. Quim. Nova, 21(6), 702-704. http://dx.doi.org/10.1590/S0100-40421998000600005.
Silva, M. S., Fantini, A. C. & Shanley, P. (2011) Látex de amapá (Parahancornia fasciculata (Poir) Benoist, Apocynaceae): remédio e renda na floresta e na cidade. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 6(2), .287-305.
Silva, R. A. D. (1929) Pharmacopeia dos Estados Unidos do Brasil. São Paulo, SP: Companhia Editora Nacional.
Sousa, E. L., Grangeiro, A. R. S., Bastos, I. V. G. A., Rodrigues, G. C. R., Silva, M. J., Anjos, F. B. R., Souza, I. A. & Sousa, C. E. L. (2010). Antitumor activity of leaves of Himatanthus drasticus (Mart.) Plumel-Apocynaceae (Janaguba) in the treatment of sarcoma 180 tumor. Brazilian Journal of Pharmaceutical Sciences, 43(2), 1-5. http://dx.doi.org/10.1590/S1984-82502010000200005.
Spina, A. P. (2004). Estudos taxonômicos, micro-morfológico e filogenético do gênero Himatanthus Willd. Ex Schult. (Apocynaceae: Rauvolfioideae-Plumerieae). 197f. Tese (Doutorado em Biologia Vegetal), Campinas, SP: Universidade Estadual de Campinas.
Suffredini, I. B., Paciencia, M. L. B., Varella, A. D. & Younes, R. N. (2006). In vitro prostate cancer cell growth inhibition by Brazilian plant extracts. Pharmazie, 61(8), 722-724. Retrieved from https://pubmed.ncbi.nlm.nih.gov/16964718/.
Suffredini, I. B., Paciencia, M. L. B., Varella, A. D. & Younes, R. N. (2007). In vitro cytotoxic activity of Brazilian plant extracts against human lung, colon and CNS solid cancers and leukemia. Fitoterapia, 78(3), 223-226, doi: 10.1016/j.fitote.2006.11.011.
Sun, P., Sehouli, J., Denkert, C., Mustea, A., Könsgen, D., Koch, I., Wei, L. & Lichtenegger, W. (2005). Expression of estrogen receptor-related receptors, a subfamily of orphan nuclear receptors, as new tumor biomarkers in ovarian cancer cells. J Mol Med, 83(6), 457-467. Retrieved from https://link.springer.com/article/10.1007/s00109-005-0639-3.
Suzuki, T., Miki, Y., Moriya, T., Shimada, N., Ishida, T., Hirakawa, H., Ohuchi, N. & Sasano, H. (2004). Estrogen-related receptor a in human breast carcinoma as a potent prognostic factor. Cancer research, 64(13), 4670-4676. doi: 10.1158/0008-5472.CAN-04-0250.
Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal, 16(2), 139-144. https://doi.org/10.1016/j.cellsig.2003.08.007.
Tokarnia, C. H., Döbereiner, J. & Peixoto, P. V. (2000) "Plantas Tóxicas do Brasil”. Rio de Janeiro, RJ: Helianthus, 2 ed.
Traxler, P. (2003). Tyrosine kinases as targets in cancer therapy – successes and failures. Oncologic, 7(2), 1472-8222. doi: 10.1517/14728222.7.2.215.
Trópicos®.org, (2017). internal research and world’s scientific community, "nomenclatural, bibliographic, and specimen of Asclépias curassavica. Retrieved from http://www.tropicos.org/
Tundis, R., Loizzo, M. R., Menichini, F., Statti, G. A. & Menichini, F. (2008). Biological and pharmacological activities of iridoids: Recent developments. Mini Rev Med Chem, 8(4), 399-420. doi: 10.2174/138955708783955926.
Vale, V. V., Vilhena, T. C., Trindade, R. C. S., Ferreira, M. R. C., Percário, S., Soares, L. F., Pereira, W. L., Brandão, G. C., Oliveira, A. O., Dolabela, M. F. & Vasconcelos, F. (2015). Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon. Malar J, 14(132), 2-10. Retrieved from https://malariajournal.biomedcentral.com/articles/10.1186/s12936-015-0643-1.
Wang, J., Fang, F., Huang, Z., Wang, Y., & Wong, C. (2009). Kaempferol is an estrogen-related receptor a and g inverse agonist. FEBS Lett, 583(4), 643-647. https://doi.org/10.1016/j.febslet.2009.01.030.
Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., Zeng, J., Zhang, T., Wu, H., Chen, L., Huang, C. & Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 7(9), 966-978. doi: 10.4161/auto.7.9.15863.
Wang, W., Li, L., Lin, W. L., Dickson, D. W., Petrucelli, L., Zhang, T., & Wang, X. (2013). The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet, 22(23), 4706-4719. doi: 10.1093/hmg/ddt319.
Yang, J. H., Hsia, T. C., Kuo, H. M., Chao, P. D. L., Chou, C. C., Wei, Y. H. & Chung, J. G. (2006). Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos, 34(2), 296-304. doi: 10.1124/dmd.105.005280.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mirian Letícia Carmo Bastos; Rosana Moura Sarmento; Marcelo de Oliveira Bahia; Jaqueline da Silva Rodrigues; Valdicley Vieira Vale; Sandro Percário; Maria Fâni Dolabela
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.