Comparative study of the efficiency of pretreatment with alkaline hydrogen peroxide in pineapple bagasse in different granulometries submitted to acid and enzymatic saccharification

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.9902

Keywords:

Ananás comosus; Hydrolyses; Lignocellulosic-materials; Industrial residues.

Abstract

This work had the purpose of evaluating the efficiency of the pretreatment with alkaline hydrogen peroxide of pineapple bagasse in order to obtain fermentable sugars by applying acid and enzymatic hydrolysis to said residue. Four experimental designs were applied to study the best conditions for the pre-treatment. Total reducing sugars (TRS) concentration was the response and hydrogen peroxide concentration, time and temperature were the independent variables. The studies were conducted using pineapple bagasse with particle sizes of 20 mesh and 48 mesh. Acid saccharification, with 2.9% sulfuric acid (v/v), following the pre-treatment, yielded TRS concentrations that reached 0.094 g of TRS/g of raw bagasse for 20 mesh and 0.101 g of TRS/g of raw bagasse for 48 mesh. The enzymatic saccharification, with 9 FPU/g cellulase and 2% (m/v) of bagasse, reached 0.063 g of TRS/g of raw bagasse for both particle sizes. The peroxide concentration showed a significant influence, the use of high concentrations reduced the TRS output in both hydrolysis. With the results found in this work, it is possible to infer the feasibility of applying pineapple bagasse as a lignocellulosic raw material. 

References

Aranda-Martinez, A., Ortiz, M. A. N., García, I. S. A., Zavala-Gonzalez, E. A., & Lopez-Llorca, L. V. (2017). Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, Microbiological Research, 204, 30-39.

Aziz, M. G., Michlmayr, H., Kulbe, K. D., & Del Hierro, A. M. (2011). Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase, Enzyme Microbiology and Technology, 48(1), 85-91.

Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications, Trends in Food Science & Technology, 82, 60-70.

Bhattacharyya, D., & Gundupalli, M.P. (2019). Ethanol Production from Acid Pretreated Food Waste Hydrolysate using Saccharomyces cerevisae 74D694 and Optimizing the Process using Response Surface Methodology, Waste Biomass Valor, 10, 701-708.

Bettiga, M.; Hahn-Hägerdal, B.; & Gorwa-Grauslund, M. F. (2008). Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae, BioMedCentral, 16(1), 107-115.

Boussarsar, H., Rogé, B., & Mathlouthi, M. (2009). Optimization of sugarcane bagasse conversion by hydrothermal, Bioresource Technology, 100(24), 6537-6542.

Brito, T. B. N., Pereira, A. P. A., Pastore, G. M., Moreira, R. F. A., Ferreira, M. S. L., & Fai, A. E. C. (2020). Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization, Food Science and technology, 124, 109028.

Browning, B. L. (1967). Methods of wood chemistry. New York/ London/ Sydney: Interscience Publishers, V. II.

Cao, W.; Sun, C.; Qiu, J.; Li, X.; Liu, R.; & Zhang, L. (2016). Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean Journal of Chemical Engineering, 33(3), 873-879.

Candido, R. G., Mori, N. R., & Gonçalves, A. R. (2019). Sugarcane straw as feedstock for 2G ethanol: Evaluation of pretreatments and enzymatic hydrolysis, Industrial Crops and Products, 142, 111845.

Cassellis, M. E. R., Sánchez-Pardo, M. E., & Mora-Escobedo, R. (2014). Structural, physicochemical and functional properties of industrial residues of pineapple (Ananas comosus), Cellulose Chemistry and Technology, 48(7-8), 633-641.

Chaturved, V., & Verma, P. (2013). An overview of pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products, 3 Biotech, 3(5), 415-431.

Chen, M., Zhao, J.; & Xia, L. (2009). Comparison of four different chemicals pretreatment of corn stover for enhancing enzymatic digestibility, Biomass and energy, 33, 1381-1385.

De Araújo, C. K. C., Campos, A. O., Padilha, C. E. A., Sousa Júnior, F. C., Nascimento, R. J. A., Macedo, G. R., & Santos, E. S. (2017). Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation. Bioresource Technology, 237, 20-26.

Da Costa, J. A.; Marques JR., J. E.; Gonçalves, L. R. B.; & Rocha, M. V. P. (2015). Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide, Bioresource Technology, 179, 249-259.

Dahunsi, S. O. (2019). Liquefaction of pineapple peel: Pretreatment and process optimization, Energy, 185, 1017-1031.

Gil, L. S.; & Maupoey, P. F. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues, Journal of Cleaner Production, 172, 1224-1231.

Ho, M. C., Ong, V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in biomass pretreatment and valorization – a review, Renewable and Sustainable Energy Reviews, 112, 75-86.

Karagöz, P.; Rocha, I. V.; Özkan, M.; & Angelidaki, I. (2012). Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation, Bioresource Technology, 104(87), 348-357.

Krishna, S. H., Rao, K. C. S., Babu, J. S., & Reddy, D. S. (2000). Studies on the production and application of cellulose from Trichoderma reesei QM-9414, Bioprocess Engineering, 22(98), 467-470.

Karagöz, P., Rocha, I. V., Özkan, M., & Angelidaki, I. (2012). Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Bioresource Technology, 104(87), 348-357

Kucerová, V., & Vybohová, E. (2018). Release of saccharides during hot-water pretreatment of Willow Wood, Cellulose Chemistry and Technology, 52(5-6), 381-386.

Maneeintr, K., Leewisuttikul, T., Kerdsuk, S., & Charinpanitkul, T. (2018). Hydrotermal and enzymatic treatments of pineapple waste for energy production, Energy Procedia, 152, 1260-1265.

Martin, C. et al. (2007). Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. In: J. R. Mielenz, K. T. Klasson, W. S. Adney, & J. D. McMillan (Ed.) Applied Biochemistry and Biotechnology (pp. 339-352). Nashville: The Twenty-Eighth Symposium Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and Chemicals.

Maurya, D. P.; Singla, A.; & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597-609.

Menon, V.; & Rao, M. (2012). Trends in bioconversion of lignocelluloses: Biofuels, platform chemicals & biorefinery concept, Progress in Energy Combustion and Science, 38(4), 522-550.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry, Natick, Mass, 31(3), 426-428.

Moutta, R. O., Chandel, A. K., Rodrigues, R. C. L. B., Silva, M. B.; Rocha, G. J. M., & Silva, S. S. (2011). Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process, Sugar technology, 14(1). 53-60.

Nakanish, S. C., Nascimento, V. M., Rabelo, S. C., Samapaio, I. L. M., Junqueira, T. L., & Rocha, G. J. M. (2018). Comparative material balances and preliminar technical analysis of the pilot scale sugarcane bagasse alkaline pretreatment to 2G ethanol production, Industrial Crops & Products, 120, 187-197.

Neto, J. M.; Garcia, D. R.; Rueda, S. M. G.; & Da Costa, A. C. (2013). Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments, Bioprocess Biosystems and Engineering, 36, 1579-1590.

Oliveira, C. C. dos S. Otimização do pré-tratamento com peróxido de hidrogênio a alta concentração de sólidos para a hidrólise enzimática de bagaço de cana-de açúcar. 81f. Dissertação (Mestrado em Engenharia Química) - Curso de Pós-Graduação em Engenharia Química. Universidade Estadual de Campinas. São Paulo (2012).

Pabón, A. M. A., Felissia, F., Mendieta, C., Chamorro, E., & Area, M. C. (2020). Improvement of Bioethanol Production from Rice Husks, Cellulose Chemistry and Technology, 54 (7-8), 689-698.

Santo, M. E., Rezende, C. A., Bernardinelli, O. D., Pereira Jr., N., Curvelo, A. A. S., De Azevedo, E. R., Guimarães, F. E. G., & Polikarpovi, I. (2018). Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis, Industrial Crops & Products. 113, 64-74.

Santos, L. C., Adarme, O. F. H., Baeta, B. E. L., Gurgel, L. V. A., & Aquino, S. F. (2018). Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks, Bioresource Technology, 263, 601 – 612.

Söderström, J.; Pilcher, L.; Galbe, M.; & Zacchi, G. (2003). Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production, Biomass and Bioenergy, 24, 475-486.

Shahbandeh, M. (2019). Leading countries in pineapple production worldwide in 2017 (in 1,000 metric tons). Statista. Retrieved August 30, 2019, from: https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/

Shen, F., Saddler, J. N., Liu, R.; Lin, L.; Deng, S.; Zhang, Y.; Yang, G.; Xiao, H.; & Li, Y. (2011). Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production, Carbohydrate Polymers, 86(4), 1542-1548.

Silva, O. de O. Aproveitamento do bagaço de abacaxi (Ananas comosus L. Merril) para produção biotecnológica de xilitol. 142f. (Doctor Scientiae). Departamento de Ciência e Tecnologia de Alimentos Universidade Federal de Viçosa, MG (2011).

Silva, V., Ratti, R. P., Sakamoto, I. K., Andrade, M. V. F., & Vareshe, M. B. A. (2018). Biotechnological products in batch reactors obtained from cellulose, glucose and xylose, using thermophilic anaerobic consortium, Renewable Energy, 125, 537-545.

Rabelo, S. C. Avaliação do pré-tratamento com peróxido de hidrogênio alcalino para a hidrolise enzimática de bagaço de cana-de-açúcar. 180f. Dissertação (Doutorado em Engenharia Química) - Curso de Pós-Graduação em Engenharia Química. Universidade Estadual de Campinas (2010).

Travaini, R., Martín-Juarez, J., Lorenzo-Hernando, A., & Bolado-Rodríguez, S. (2016). Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited, Bioresource Technology, 199, 2-12.

Zhang, H.P.Y., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies, Biotechnology Advances, 24(5), 452-481.

Downloads

Published

25/01/2021

How to Cite

NOGUEIRA, D. P. .; VASCONCELOS, L. C.; CASTIGLIONI, G. L.; FREITAS, F. F. .; SEOLATTO, A. A. Comparative study of the efficiency of pretreatment with alkaline hydrogen peroxide in pineapple bagasse in different granulometries submitted to acid and enzymatic saccharification. Research, Society and Development, [S. l.], v. 10, n. 1, p. e4921019902, 2021. DOI: 10.33448/rsd-v10i1.9902. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9902. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings