Data Science applied to criminal analysis based on Minas Gerais open government data
DOI:
https://doi.org/10.33448/rsd-v9i11.10044Keywords:
Criminal Analysis; Data Science; Open government data.Abstract
Context: Crime is a common and complex social problem that affects a nation's quality of life, economic growth and reputation. Governments and society in general have had enormous problems caused by this phenomenon. Each year, governments spend millions of dollars fighting violence and, consequently, crime prevention and control are issues of great concern to public security agencies. Objective: To apply fundamentals of Data Science and provide an automated model, constantly updated, to analyze open government data related to crimes occurred in Minas Gerais. Method: We have performed an experiment to discover associations between municipalities, Integrated Public Security Regions (IPSRs), crimes, robbery targets, and theft targets. Additionally, we have developed rankings with the most dangerous municipalities. Results: From a general point of view, with scores for crimes, Belo Horizonte, Confins and Contagem were always among the five most dangerous. In addition, it became evident that there are dependencies between: crimes and municipalities, crimes and IPSRs, robbery targets and municipalities, and robbery targets and IPSRs. Conclusion: Data Science enables the execution of more accurate and faster diagnoses, helping strategic planning and decision making in Public Security. With some peculiarities and going beyond homicides, Minas Gerais partially follows the national trend of having lower crime rates in areas around regions with greater economic development.
References
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data (pp. 207-216).
Agrawal, S., & Sejwar, V. (2017). Crime identification using FP-growth and multi objective particle swarm optimization. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 727-734). IEEE.
Albuquerque, D. J. S., Nunes, V. T., Cappelli, C., & Ralha, C. G. (2016). Implementing E-government Processes Distribution with Transparency using Multi-Agent Systems. iSys-Revista Brasileira de Sistemas de Informação, 9(1), 118-138.
Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J., & Rombach, D. (2014). Aligning Organizations Through Measurement: The GQM+ Strategies Approach. Springer.
Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE Transactions on software engineering, (6), 728-738.
Bertot, J. C., Gorham, U., Jaeger, P. T., Sarin, L. C., & Choi, H. (2014). Big data, open government and e-government: Issues, policies and recommendations. Information polity, 19(1, 2), 5-16.
Blackburn, S. (2016). The Oxford Dictionary of Philosophy. 2 ed. Oxford University Press. Online version. Recuperado de http://www.oxfordreference.com/view/10.1093/acref/9780199
001.0001/acref-9780199541430-e-1645.
Campos, O. S. F. (2018). Data analytics transparente para descoberta de padrões e anomalias na realização de convênios e contratos de repasse federais.
Carazza, L., da Mota Silveira Neto, R., & Emanuel, L. (2020). Juvenile curfew and crime reduction: Evidence from Brazil. Papers in Regional Science.
Catlett, C., Cesario, E., Talia, D., & Vinci, A. (2018, June). A data-driven approach for spatio-temporal crime predictions in smart cities. In 2018 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 17-24). IEEE.
Chapetta, W. A. (2006). Uma Infra-estrutura para Planejamento, Execução e Empacotamento de Estudos Experimentais em Engenharia de Software (Doctoral dissertation, Dissertação de Mestrado, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brasil).
Chaves, M. S. R. S., & Shimizu, I. S. (2018). Síndrome de burnout e qualidade do sono de policiais militares do Piauí. Revista Brasileira de Medicina do Trabalho, 16(4), 436-441.
Dados Abertos. (2020). Portal brasileiro de dados abertos. Recuperado de http://www.dados.gov.br.
Damasceno, M., Teixeira, J., & Campos, G. (2012). A prediction model for criminal levels using socio-criminal data. International Journal of Electronic Security and Digital Forensics 7, 4(2-3), 201-214.
de Barros, P. H. B., Baggio, I. S., Stege, A. L., & Hilgemberg, C. M. D. A. T. (2019). Economic development and crime in brazil: a multivariate and spatial analysis. Revista Brasileira de Estudos Regionais e Urbanos, 13(1), 1-22.
de Farias, A. M. G., Cintra, M. E., Felix, A. C., & Cavalcante, D. L. (2018). Definition of strategies for crime prevention and combat using fuzzy clustering and formal concept analysis. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26(03), 429-452.
Ervilha, G. T., & Lima, J. E. D. (2019). Um método econométrico na identificação dos determinantes da criminalidade municipal: a aplicação em Minas Gerais, Brasil (2000-2014). Economía, sociedad y territorio, 19(59), 1059-1086.
Fraga, L. D. S., Medeiros, A. P. D., & Vieira, K. M. (2019). Transparência da gestão pública: Análise em pequenos municípios do Rio Grande o Sul. Gestão & Planejamento-G&P, 20.
Guimarães, F. F., Joaquim, S. F., Manzi, M. P., Silva, R. C. D., Bruder-Nascimento, A. C. M. D. O., Costa, E. O., & Langoni, H. (2016). Comparison phenotypic and genotypic identification of Staphylococcus species isolated from bovine mastitis. Pesquisa Veterinária Brasileira, 36(12), 1160-1164.
Gupta, M., Chandra, B., & Gupta, M. P. (2014). A framework of intelligent decision support system for Indian police. Journal of Enterprise Information Management.
Hardy, K., & Maurushat, A. (2017). Opening up government data for Big Data analysis and public benefit. Computer law & security review, 33(1), 30-37.
Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, adoption barriers and myths of open data and open government. Information systems management, 29(4), 258-268.
Juristo, N., & Moreno, A. M. (2013). Basics of software engineering experimentation. Springer Science & Business Media.
Lima, A.; Vignatti, A. & Silva, M. (2020). Reconhecimento de grafos Power-law por algoritmos de aprendizagem de máquina utilizando um conjunto reduzido de propriedades estruturais. Encontro nacional de inteligência artificial e computacional, 611-621.
Lima, R. S., & Bueno, S. (2020). Anuário brasileiro de segurança pública 2020. Fórum Brasileiro de Segurança Pública. São Paulo.
Maciel, G. S. (2019). Eficiência técnica da polícia militar: um estudo dos comandos de policiamento regionais do Distrito Federal por meio da análise envoltória de dado.
Marzan, C. S., Baculo, M. J. C., de Dios Bulos, R., & Ruiz Jr, C. (2017). Time series analysis and crime pattern forecasting of city crime data. International conference on algorithms, computing and systems, pp. 113-118.
Nascimento, D. O. do. (2019). Transparência pública: uma análise do município de Alagoa Nova-PB.
Paranhos, R., Figueiredo Filho, D. B., da Rocha, E. C., da Silva Júnior, J. A., Neves, J. A. B., & Santos, M. L. W. D. (2014). Desvendando os mistérios do coeficiente de correlação de Pearson: o retorno. Leviathan (São Paulo), (8), 66-95.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Phillips, P., & Lee, I. (2011). Crime analysis through spatial areal aggregated density patterns. Geoinformatica, 15(1), 49-74.
Portal Transparência. (2020). Portal da Transparência do Governo Federal. Recuperado de http://www.portaltransparencia.gov.
PostgreSQL. (2020). Installing procedural languages. Recuperado de https://www.postgre
sql.org/docs/current/xplang-install.html.
Prado, K. H. de J., Souza, L. S., de Jesus Junior, I. D., & Colaço Júnior, M. (2020). Applied Intelligent Data Analysis to Government Data Related to Criminal Incident: A Systematic Review. Journal of Applied Security Research, 1-35.
Santos, B. S., Júnior, M. C., & de Souza, J. G. (2018). A initial experimental evaluation of the neuromessenger: a collaborative tool to improve the empathy of text interactions. In Information Technology-New Generations (pp. 411-419). Springer, Cham.
Santos, R. M., Santos, I. M., Júnior, M. C. R., & de Mendonça Neto, M. G. (2020). Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection. In ICEIS (2) (pp. 157-165).
Sejusp. (2020). Portal da Secretaria de Estado de Justica e Seguranca Publica de Minas Gerais. Recuperado de http://www.seguranca.mg.gov.br.
Silvares, A. C. (2019). Políticas Públicas em Segurança no Brasil: Avanços e Novos Desafios. Revista Científica Doctum Direito, 1(3).
Singh, N., Kaverappa, C. B., & Joshi, J. D. (2018). Data mining for prevention of crimes. In International Conference on Human Interface and the Management of Information (pp. 705-717). Springer, Cham.
ToppiReddy, H. K. R., Saini, B., & Mahajan, G. (2018). Crime prediction & monitoring framework based on spatial analysis. Procedia computer science, 132, 696-705.
Travassos, G. H., & Barros, M. O. (2003). Contributions of in virtuo and in silico experiments for the future of empirical studies in software engineering. In 2nd Workshop on Empirical Software Engineering the Future of Empirical Studies in Software Engineering (pp. 117-130).
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. Springer Science & Business Media.
Wu, J., He, Z., Gu, F., Liu, X., Zhou, J., & Yang, C. (2016). Computing exact permutation p-values for association rules. Information Sciences, 346, 146-162.
Yadav, S., Timbadia, M., Yadav, A., Vishwakarma, R., & Yadav, N. (2017). Crime pattern detection, analysis & prediction. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 1, pp. 225-230). IEEE.
Zheng, Z., Kohavi, R., & Mason, L. (2001). Real world performance of association rule algorithms. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 401-406).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Kleber Henrique de Jesus Prado; Methanias Colaço Júnior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.