Sensitivity of alarm in an epidemiological syndromic surveillance system and proposed bayesian network
DOI:
https://doi.org/10.33448/rsd-v9i11.10569Keywords:
Outbreak detection; Bayesian networks; Animal surveillance.Abstract
The efficiency of a syndromic surveillance system was evaluated for mortality in poultry based on international recommendations. Various forms of epidemiological events were simulated with different scenarios. The system's alarm techniques were analyzed according to their sensitivities as well as the correlation between the respective results. Among the techniques used by the system, the Shewhart chart was the one that most contributed to the correct detection of outbreaks, presenting a probability greater than 95% in the detection of true positive alarms and only 4.6% of false positives. In order to correct the sensitivity of the system in detecting outbreaks, a Bayesian network was developed. This network was proposed as part of the evaluation of the results of the system, providing greater precision. The proposed Bayesian network was able to correct errors in the evaluated system, proving to be a viable addition to the syndromic surveillance system. The highest correlation coefficients identified were given by the relationship between the Shewhart control graph and Exponentially Weighted Moving Average (EWMA). The system tends to overestimate the occurrence of alarms through false positives; however the proposed Bayesian network corrected all failures to a level of 30%.
References
Barboza, V. H. D. (2018). Bioterrorismo e suas perspectivas em saúde pública. Recuperado de https://repositorio.uniceub.br/jspui/handle/235/11667
Ben‐Gal, I. (2007). Bayesian networks. Encyclopedia of statistics in quality and reliability, 1. https://doi.org/10.1002/9780470061572.eqr089
Bower, K. M. (2000). Using exponentially weighted moving average (EWMA) charts. Asia Pacific Process Engineer. (October 2000) Recuperado de: https://www.researchgate.net/profile/Keith_M_Bower/publication/337801788_Using_Exponentially_Weighted_Moving_Average_EWMA_Charts/links/5deadfb54585159aa4689348/Using-Exponentially-Weighted-Moving-Average-EWMA-Charts.pdf
Bronner, A., Morignat, E., Fournié, G., Vergne, T., Vinard, J. L., Gay, E., & Calavas, D. (2015). Syndromic surveillance of abortions in beef cattle based on the prospective analysis of spatio-temporal variations of calvings. Scientific reports, 5, 18285. https://doi.org/10.1038/srep18285.
Buehler, J. W., Berkelman, R. L., Hartley, D. M., & Peters, C. J. (2003). Syndromic surveillance and bioterrorism-related epidemics. Emerging infectious diseases, 9(10), 1197. https://doi.org/10.3201/eid0910.030231
Costa, A. F. B., Epprecht, E. K., & Carpinetti, L. C. R. (2005). Controle estatístico de qualidade (pp. 185-94). São Paulo: Atlas.
Dórea, F. C., Revie, C. W., McEwen, B. J., McNab, W. B., Kelton, D., & Sanchez, J. (2013). Retrospective time series analysis of veterinary laboratory data: preparing a historical baseline for cluster detection in syndromic surveillance. Preventive veterinary medicine, 109(3-4), 219-227. https://doi.org/10.1016/j.prevetmed.2012.10.010
Dórea, F. C., Widgren, S., & Lindberg, A. (2015). Vetsyn: an R package for veterinary syndromic surveillance. Preventive veterinary medicine, 122(1-2), 21-32. https://doi.org/10.1016/j.prevetmed.2015.10.002
Edo-Osagie, O., Smith, G., Lake, I., Edeghere, O., & De La Iglesia, B. (2019). Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance. PloS one, 14(7), e0210689. https://doi.org/10.1371/journal.pone.0210689
Gibbens, J. C., Wilesmith, J. W., Sharpe, C. E., Mansley, L. M., Michalopoulou, E., Ryan, J. B. M., & Hudson, M. (2001). Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Veterinary Record, 149(24), 729-743. http://dx.doi.org/10.1136/vr.149.24.729
Heffernan, R., Mostashari, F., Das, D., Besculides, M., Rodriguez, C., Greenko, J., ... & Phillips, M. (2004). New York City syndromic surveillance systems. Morbidity and Mortality Weekly Report, 25-27.
Henning, K. J. (2004). What is syndromic surveillance? Morbidity and mortality weekly report, 7-11.
Højsgaard, S. (2012). Graphical independence networks with the gRain package for R. Journal of Statistical Software, 46(10), 1-26.
Hy-Line (2016). Guia de manejo para poedeiras comerciais Hy-Line W-36. Recuperado de https://www.hyline.com/french/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20POR.pdf
Lalkhen, A. G., & McCluskey, A. (2008). Clinical tests: sensitivity and specificity. Continuing Education in Anaesthesia Critical Care & Pain, 8(6), 221-223. https://doi.org/10.1093/bjaceaccp/mkn041
Mandl, K. D., Overhage, J. M., Wagner, M. M., Lober, W. B., Sebastiani, P., Mostashari, F., & Hutwagner, L. (2004). Implementing syndromic surveillance: a practical guide informed by the early experience. Journal of the American Medical Informatics Association, 11(2), 141-150. https://doi.org/10.1197/jamia.M1356
Marques, R. L., & Dutra, I. N. Ê. S. (2002). Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Coppe Sistemas–Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. Recuperado de: https://cos.ufrj.br/~ines/courses/cos740/leila/cos740/Bayesianas.pdf
Mingoti, S. A., & Yassukawa, F. R. (2008). Uma comparação de gráficos de controle para a média de processos autocorrelacionados. Sistemas & Gestão, 3(1), p.55-73.
Mnatsakanyan, Z. R., Burkom, H. S., Coberly, J. S., & Lombardo, J. S. (2009). Bayesian information fusion networks for biosurveillance applications. Journal of the American Medical Informatics Association, 16(6), 855-863. https://doi.org/10.1197/jamia.M2647
Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons. Arizona-US.
Mostashari, F., & Karpati, A. (2002). Towards a theoretical (and practical) framework for prodromic surveillance. In International Conference on Emerging Infectious Diseases, Atlanta, GA, March.
Olson, K. L., & Mandl, K. D. (2002). Geocoding patient addresses for biosurveillance. In Proceedings of the AMIA Symposium (p. 1119). American Medical Informatics Association.
Ozonoff, A., Forsberg, L., Bonetti, M., & Pagano, M. (2004). Bivariate method for spatio-temporal syndromic surveillance. Morbidity and Mortality Weekly Report, 61-66.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.
Roberts, S. W. (2000). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97-101.
Rogerson, P. A., & Yamada, I. (2004). Approaches to syndromic surveillance when data consist of small regional counts. Morbidity and Mortality Weekly Report, 79-85.
Schwabe, C. (1982). The current epidemiological revolution in veterinary medicine. Part I. Preventive Veterinary Medicine, 1(1), 5-15. https://doi.org/10.1016/0167-5877(82)90003-4
Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical Software, 35(3), 1-22. Recuperado de http://www.jstatsoft.org/v35/i03/
Silva, W. V. da; Samohyl, R. W.; Costa, L. S. (2002). Comparação entre os métodos de previsão univariados para o preço médio da soja no brasil. Anais XXII Encontro Nacional de Engenharia de Produção 2002, 1–8.
Veríssimo, A. J., Alves, C. C., Henning, E., Amaral, C. E., Cruz, A. C. (2013). Métodos estatísticos de suavização exponencial holt-winters para previsão de demanda em uma empresa do setor metal mecânico. Revista Gestão Industrial, 8(4). https://doi.org/10.3895/S1808-04482012000400009
Wagner, M. M., Tsui, F. C., Espino, J. U., Dato, V. M., Sittig, D. F., Caruana, R. A., & Fridsma, D. B. (2001). The emerging science of very early detection of disease outbreaks. Journal of public health management and practice, 7(6), 51-59.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management science, INFORMS, 6(3), 324–342. https://doi.org/10.1287/mnsc.6.3.324
Zeng, D., Chen, H., Lynch, C., Eidson, M., & Gotham, I. (2005). Infectious diseaxe informatics and outbreak detection. In Medical Informatics (pp. 359-395). Springer, Boston, MA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Patricia de Souza Medeiros Pina Ximenes; Kleber Régis Santoro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.