Sensitivity of alarm in an epidemiological syndromic surveillance system and proposed bayesian network

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10569

Keywords:

Outbreak detection; Bayesian networks; Animal surveillance.

Abstract

The efficiency of a syndromic surveillance system was evaluated for mortality in poultry based on international recommendations. Various forms of epidemiological events were simulated with different scenarios. The system's alarm techniques were analyzed according to their sensitivities as well as the correlation between the respective results. Among the techniques used by the system, the Shewhart chart was the one that most contributed to the correct detection of outbreaks, presenting a probability greater than 95% in the detection of true positive alarms and only 4.6% of false positives. In order to correct the sensitivity of the system in detecting outbreaks, a Bayesian network was developed. This network was proposed as part of the evaluation of the results of the system, providing greater precision. The proposed Bayesian network was able to correct errors in the evaluated system, proving to be a viable addition to the syndromic surveillance system. The highest correlation coefficients identified were given by the relationship between the Shewhart control graph and Exponentially Weighted Moving Average (EWMA). The system tends to overestimate the occurrence of alarms through false positives; however the proposed Bayesian network corrected all failures to a level of 30%.

References

Barboza, V. H. D. (2018). Bioterrorismo e suas perspectivas em saúde pública. Recuperado de https://repositorio.uniceub.br/jspui/handle/235/11667

Ben‐Gal, I. (2007). Bayesian networks. Encyclopedia of statistics in quality and reliability, 1. https://doi.org/10.1002/9780470061572.eqr089

Bower, K. M. (2000). Using exponentially weighted moving average (EWMA) charts. Asia Pacific Process Engineer. (October 2000) Recuperado de: https://www.researchgate.net/profile/Keith_M_Bower/publication/337801788_Using_Exponentially_Weighted_Moving_Average_EWMA_Charts/links/5deadfb54585159aa4689348/Using-Exponentially-Weighted-Moving-Average-EWMA-Charts.pdf

Bronner, A., Morignat, E., Fournié, G., Vergne, T., Vinard, J. L., Gay, E., & Calavas, D. (2015). Syndromic surveillance of abortions in beef cattle based on the prospective analysis of spatio-temporal variations of calvings. Scientific reports, 5, 18285. https://doi.org/10.1038/srep18285.

Buehler, J. W., Berkelman, R. L., Hartley, D. M., & Peters, C. J. (2003). Syndromic surveillance and bioterrorism-related epidemics. Emerging infectious diseases, 9(10), 1197. https://doi.org/10.3201/eid0910.030231

Costa, A. F. B., Epprecht, E. K., & Carpinetti, L. C. R. (2005). Controle estatístico de qualidade (pp. 185-94). São Paulo: Atlas.

Dórea, F. C., Revie, C. W., McEwen, B. J., McNab, W. B., Kelton, D., & Sanchez, J. (2013). Retrospective time series analysis of veterinary laboratory data: preparing a historical baseline for cluster detection in syndromic surveillance. Preventive veterinary medicine, 109(3-4), 219-227. https://doi.org/10.1016/j.prevetmed.2012.10.010

Dórea, F. C., Widgren, S., & Lindberg, A. (2015). Vetsyn: an R package for veterinary syndromic surveillance. Preventive veterinary medicine, 122(1-2), 21-32. https://doi.org/10.1016/j.prevetmed.2015.10.002

Edo-Osagie, O., Smith, G., Lake, I., Edeghere, O., & De La Iglesia, B. (2019). Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance. PloS one, 14(7), e0210689. https://doi.org/10.1371/journal.pone.0210689

Gibbens, J. C., Wilesmith, J. W., Sharpe, C. E., Mansley, L. M., Michalopoulou, E., Ryan, J. B. M., & Hudson, M. (2001). Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Veterinary Record, 149(24), 729-743. http://dx.doi.org/10.1136/vr.149.24.729

Heffernan, R., Mostashari, F., Das, D., Besculides, M., Rodriguez, C., Greenko, J., ... & Phillips, M. (2004). New York City syndromic surveillance systems. Morbidity and Mortality Weekly Report, 25-27.

Henning, K. J. (2004). What is syndromic surveillance? Morbidity and mortality weekly report, 7-11.

Højsgaard, S. (2012). Graphical independence networks with the gRain package for R. Journal of Statistical Software, 46(10), 1-26.

Hy-Line (2016). Guia de manejo para poedeiras comerciais Hy-Line W-36. Recuperado de https://www.hyline.com/french/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20POR.pdf

Lalkhen, A. G., & McCluskey, A. (2008). Clinical tests: sensitivity and specificity. Continuing Education in Anaesthesia Critical Care & Pain, 8(6), 221-223. https://doi.org/10.1093/bjaceaccp/mkn041

Mandl, K. D., Overhage, J. M., Wagner, M. M., Lober, W. B., Sebastiani, P., Mostashari, F., & Hutwagner, L. (2004). Implementing syndromic surveillance: a practical guide informed by the early experience. Journal of the American Medical Informatics Association, 11(2), 141-150. https://doi.org/10.1197/jamia.M1356

Marques, R. L., & Dutra, I. N. Ê. S. (2002). Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Coppe Sistemas–Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. Recuperado de: https://cos.ufrj.br/~ines/courses/cos740/leila/cos740/Bayesianas.pdf

Mingoti, S. A., & Yassukawa, F. R. (2008). Uma comparação de gráficos de controle para a média de processos autocorrelacionados. Sistemas & Gestão, 3(1), p.55-73.

Mnatsakanyan, Z. R., Burkom, H. S., Coberly, J. S., & Lombardo, J. S. (2009). Bayesian information fusion networks for biosurveillance applications. Journal of the American Medical Informatics Association, 16(6), 855-863. https://doi.org/10.1197/jamia.M2647

Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons. Arizona-US.

Mostashari, F., & Karpati, A. (2002). Towards a theoretical (and practical) framework for prodromic surveillance. In International Conference on Emerging Infectious Diseases, Atlanta, GA, March.

Olson, K. L., & Mandl, K. D. (2002). Geocoding patient addresses for biosurveillance. In Proceedings of the AMIA Symposium (p. 1119). American Medical Informatics Association.

Ozonoff, A., Forsberg, L., Bonetti, M., & Pagano, M. (2004). Bivariate method for spatio-temporal syndromic surveillance. Morbidity and Mortality Weekly Report, 61-66.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.

Roberts, S. W. (2000). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97-101.

Rogerson, P. A., & Yamada, I. (2004). Approaches to syndromic surveillance when data consist of small regional counts. Morbidity and Mortality Weekly Report, 79-85.

Schwabe, C. (1982). The current epidemiological revolution in veterinary medicine. Part I. Preventive Veterinary Medicine, 1(1), 5-15. https://doi.org/10.1016/0167-5877(82)90003-4

Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical Software, 35(3), 1-22. Recuperado de http://www.jstatsoft.org/v35/i03/

Silva, W. V. da; Samohyl, R. W.; Costa, L. S. (2002). Comparação entre os métodos de previsão univariados para o preço médio da soja no brasil. Anais XXII Encontro Nacional de Engenharia de Produção 2002, 1–8.

Veríssimo, A. J., Alves, C. C., Henning, E., Amaral, C. E., Cruz, A. C. (2013). Métodos estatísticos de suavização exponencial holt-winters para previsão de demanda em uma empresa do setor metal mecânico. Revista Gestão Industrial, 8(4). https://doi.org/10.3895/S1808-04482012000400009

Wagner, M. M., Tsui, F. C., Espino, J. U., Dato, V. M., Sittig, D. F., Caruana, R. A., & Fridsma, D. B. (2001). The emerging science of very early detection of disease outbreaks. Journal of public health management and practice, 7(6), 51-59.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management science, INFORMS, 6(3), 324–342. https://doi.org/10.1287/mnsc.6.3.324

Zeng, D., Chen, H., Lynch, C., Eidson, M., & Gotham, I. (2005). Infectious diseaxe informatics and outbreak detection. In Medical Informatics (pp. 359-395). Springer, Boston, MA.

Published

04/12/2020

How to Cite

XIMENES, P. de S. M. P. .; SANTORO, K. R. Sensitivity of alarm in an epidemiological syndromic surveillance system and proposed bayesian network. Research, Society and Development, [S. l.], v. 9, n. 11, p. e80191110569, 2020. DOI: 10.33448/rsd-v9i11.10569. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10569. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences