Ação antimicrobiana do extrato hidroetanólico de Spondias mombin L. frente a bactérias bucais do gênero Streptococcus

Autores

DOI:

https://doi.org/10.33448/rsd-v10i1.11539

Palavras-chave:

Streptococcus; Fitoterapia; Clorexidina; Agente bactericida.

Resumo

Objective: The purpose of the present study was to compare the in vitro antimicrobial activity of the hydroethanolic extract of Spondias mombin leaf (S. mombin L.) with 0.12% chlorhexidine digluconate solution on Streptococcus bacterias: S. mutans, S. mitis, S. oralis, S. sanguinis and S. salivarius. Methodology: The Minimum Inhibitory Concentration (MIC), Minimum Inhibitory Concentration of Adherence (MICA) and Bactericidal Kinetics (BK) tests were performed. Results: In regards to the Streptococcus mutans, the control group (0.12% chlorhexidine digluconate solution) was statistically superior (p<0.05) to the extract group up to the concentration of 31.25 mg/ml, with no statistical difference in the other concentrations. For the Streptococcus oralis, the extract group was statistically superior (p<0.05) to the control group in its crude form (500mg/ml) and the control group had statistical significance (p <0.05) over the extract group at the following concentrations: 62.5mg/ml, 31.25mg/ml, 1.95mg/ml and 0.97mg/ml. For the Streptococcus sanguinis, the extract group was statistically superior (p <0.05) to the control group in the first two concentrations of 500mg/ml and 250mg/ml, whereas the control group had statistical significance (p<0.05) on the extract in the last two concentrations: 1.95 mg / ml and 0.97 mg / ml. The control group was statistically superior (p <0.05) to the extract group in all concentrations for the Streptococcus mitis, except for the concentration of 31.25mg / ml. For the Streptococcus salivarius, the extract was statistically superior (p<0.05) to the control group in most concentrations tested, with the exception of 15.65mg/ml and 1.95mg/ml, which did not show statistically significant differences between the groups. Conclusion: the hydroethanolic extract of Spondias mombin L., in distinct concentrations, presents similar antimicrobial activity to 0.12% chlorhexidine digluconate against the genus Streptococcus oral bacteria.

Referências

Aleluia, C. M., et al. (2015). Medicines In Dentist Herbal. Rev. Odontol. Univ. São Paulo, 27 (2), 126-134.

Alencar, L. C. B., et al. (2015). Modulatory effect of the extract of medicinal plants of the genus Spondias on the resistance of Staphylococcus aureus strains to Erythromycin. Journal of Basic and Applied Pharmaceutical Sciences, 36(1).

Asuquo, O. R., et al. (2012). Hitomorphological study of the anti-fertility effect of Spondias mombin L. in adult male rats. Journal of pharmacyand biological sciences, 3, 29-34.

Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493.

Bergenholtz, G. (2016). Assessment of treatment failure in endodontic therapy, J. Oral.Rehabil., 753-758.

Bueno-Silva, B. et al. (2013). Effect of neovestitol – vestitol containing Brazilian red propolis on accumulation of biofilm in vitro and development of dental caries in vivo. Biofouling, 29, 1233-1242.

Cabral, B., Siqueira, E., Bitencourt, M. A., Lima, M. C., Lima, A. K., Ortmann, C. F., & Reginatto, F. H. (2016). Phytochemical study and anti-inflammatory and antioxidant potential of Spondias mombin leaves. Revista Brasileira de Farmacognosia, 26 (3), 304-311.

Chiniforush, N., Pourhajibagher, M., Shahabi S., Kosarieh E. & Bahador, A. (2016). Can Antimicrobial Photodynamic Therapy (aPDT) Enhance the Endodontic Treatment? J. Lasers. Med. Sci., 76-85.

Flemming, Hans-Curt & Wingender, Jost (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.

Gebara, E. C. E., Zardetto, C. G. D. C., & Mayer, M. P. A. (1996).In vitro study of the antimicrobial action of natural substances on S. mutans and S.sobrinus. Rev Odontol Univ. 10 (4), 251- 256.

Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53.

Gunsolley, J. C. (2010). Clinical efficacy of antimicrobial mouthrinses. Journal Dent., 38, S6-S10.

Hajifattahi, F., Maravej, S. E., Taheri, M., Arash, M., & Kamalinejad, M. (2016). Antibacterial effect of hydroalcoholic extract of Punica granatum Linn. Petal on common oral microorganisms. Inter. J. Biomat, 1-6.

Jesus, R. P. F. S., et al. (2010). Antibacterial and nonstick action of pithecellobium Cochliocarpum (gomez) macbr on oral microorganisms. Odontol. Clín.-Cient. 9 (4), 331-335.

Jongsma, M. A., Van de Lagemaat, M., Busscher, H. J., Geertsema-Doornbusch, G. I., & Atema-Smit, J., Van Der Mei, H. C., & Ren, Y.(2015). Synergy of brushing mode and antibacterial use on in vivo biofilm formation. Journal of dentistry, 43(12), 1580-1586.

Khémiri,I. et al. (2019).The A ntimicrobial and Wound Healing Potential of Opuntia ficus indica L. inermis Extracted Oil from Tunisia. Evid Based Complement Alternat Med. 10.1155/2019/9148782

Marsh, P. D. (2010). Controlling the oral biofilm with antimicrobials. Journal Dent., 38, S11-S15.

Matos, L. M. R. et al. (2015). Effect of Antiseptic with and without alcohol on the oral microbiota. R. Interd, 8, (4), 174-180.

Medeiros, P. M., Ladio, A. H., Santos, A. M. M., & de Albuquerque, U. P. (2013). Does the selection of medicinal plants by Brazilian local populations suffer taxonomic influence? Journal of ethnopharmacology, 146(3), 842-852.

Natarajan, D., Britto, S. J., Srinivasan, K., Nagamurugan, N., Mohanasundari, C., & Perumal, G. (2005). Anti-bacterial activity of Euphorbia fusiformis—A rare medicinal herb. Journal of ethnopharmacology, 102 (1), 123-126.

Palombo E.A. (2011). Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid Based Complement Alternat Med. doi.org/10.1093/ecam/nep067.

Pan, P. C. et al. (2010). In-vitro evidence for efficacy of antimicrobial mouthrinses. Journal Dent., 38, S16-S20.

Pereira A. S. et al. (2018). Scientific research methodology. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/ handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Peyret, M., Carret, G., Carre, C., Fardel, G., & Flandrois, J. P. (1990). Mathematical study of the sensitivity curves of Escherichia coli exposed to polymyxins. Pathol Biol, 38,441-445.

Pourhajibagher, M., & A. Bahador, A. (2015). Is antimicrobial agent can considered as effective weapons against endodontic infections by Enterococcus faecalis? Der Pharma Chemica, 196–200.

Pyysalo, Mikko J. et al. (2019). Increased brushing frequency is associated with reduced gingival bag bacterial diversity in patients with intracranial aneurysms. Peer Journal, 7,6316.

Quintas, V., Prada-Lopez, I., Donos, N., Suarez-Quintanilla, D., & Tomas, I. (2015). In situ neutralisation of the antibacterial effect of 0.2% Chlorhexidine on salivary microbiota: Quantification of substantivity. Archives of oral biology, 60(8), 1109-1116.

Sadaka F., Nguimjeu C., Vroman I., Tighzert L. & Couvercelle J. P. (2014). Review on antimicrobial packaging containing essential oils and their active biomolecules. Innov. Food Sci. Emerg. Technol: Brachais CH.

Schlafer, S., Raarup, M. K., Meyer, R. L., Sutherland, D. S., Dige, I., Nyengaard, J. R., et al.(2011). pH Landscapes in a novel five-species model of early dental biofilm. PLoS One, 6 (9).

Shakerian, M., Yaghoti, M. M., & Doostaki, S. (2018). In Vitro Effect of Hydroalcoholic Extract of Aloe Vera and 0.2% Chlorhexidine Mouthwash on Streptococcus Sanguinis, Streptococcus Salivarius and Streptococcus Mutans. Journal of Dental School, Shahid Beheshti University of Medical Sciences, 36 (1), 18-22.

Silva, V. A. et al. (2013). Antimicrobial efficacy of the extract of Croton sonderianus Müll. on bacteria that cause dental caries. Revista de Odontologia da UNESP, 40 (2), 69-72.

Smania Jr, A., Monache, F. D., Smania, E. D. F. A., & Cuneo, R. S. (1999). Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. International Journal of medicinal mushrooms, 1(4).

Stewart, P. S., Rayner, J., Roe, F., & Rees W. M, (2001). Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. Journal Appl Microbiol; 91:525-32.

Swango, P. A. (2012). Regular use of antimicrobial mouthrinses can effectively augment the benefits of oral prophylaxis and oral hygiene instructions at 6-month recall intervals in reducing the occurrence of dental plaque and gingivitis. Journal Evid Based Dent Pract., 12 (2), 87-89.

Thadhani, V. M., Choudhary, M. I., Khan, S., & Karunaratne, V. (2012). Antimicrobial and toxicological activities of some depsides and depsidones. Journal of the National Science Foundation of Sri Lanka, 40(1), 43-48.

Torres, C. R. G., Kubo, C. H., Anido, A., & Rodrigues, J. R. (2000). Antimicrobial agents and your potential of use in odontology. PGR: Pós-Grad Rev Fac Odontol São José dos Campos. 3, 43-52.

Van der Weijden, G. A., & Hioe, K. P. K. (2005). A systematic review of the effectiveness of mechanical plaque removal performed in adults with gingivitis using a manual toothbrush. Jornal de Periodontologia clínica, 32, 214-228.

Yao, Y., Yang, X., Shi, Z., & Ren, G. (2014). Anti‐Inflammatory Activity of Saponins from Quinoa (Chenopodium quinoa Willd.) Seeds in Lipopolysaccharide‐Stimulated RAW Macrophages Cells. Journal of food science, 79(5).

Zheng, L. W., Hua, H., & Cheung, L. K. (2011). Traditional Chinese medicine and oral diseases: today and tomorrow. Oral Dis., 17, (1), 7-12.

Downloads

Publicado

19/01/2021

Como Citar

CORDEIRO, T. O. .; MENDONÇA, A. K. P. de; GOMES, M. S. .; LIMA, E. L. F. de .; COSTA, M. R. M. .; LIMA, K. C. de .; LINS , R. D. A. U. . Ação antimicrobiana do extrato hidroetanólico de Spondias mombin L. frente a bactérias bucais do gênero Streptococcus. Research, Society and Development, [S. l.], v. 10, n. 1, p. e39310111539, 2021. DOI: 10.33448/rsd-v10i1.11539. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11539. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde