Fungal chitosan as membranous material modified by atmospheric plasma

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.11543

Keywords:

Rhizopus stolonifer; Biopolymers; Fungal chitosan; Dielectric barrier discharge; DBD plasma.

Abstract

Objective: This study produced a fungal chitosan membrane extracted from Rhizopus stolonifer, as well as its modification using dielectric barrier discharge plasma (DBD), aiming to improve the physicochemical characteristics of the membrane, optimizing its use in the medical research field. Method: The obtained chitosan was physically and chemically characterized (Molecular Weight, Fourier Transform Infrared, X-ray Diffraction), later were produced fungal chitosan membranes and DBD plasma was applied. The membranes were characterized before and after plasma application using the tests contact angle, swelling and atomic force microscopy (medium roughness) analyzes. Results: A fungal chitosan with a yield of 16.73 mg/g, and an apparent molecular weight of 4 kDa was obtained, being considered of low molecular weight and high degree of deacetylation (84%). It was possible to obtain the membrane and after application of DBD plasma, the contact angle dropped from 77.5° to 30.9°, making it more hydrophilic. Conclusion: Thus, the efficiency of the technique for increasing the hydrophilicity of the fungal chitosan membrane without the additive of chemical reagents during the process was confirmed and the membrane formed is a promising alternative can be used in different ways in the medical area.

Author Biographies

Weslley de Souza Paiva, Federal University of Rio Grande do Norte

Post-Graduation Programme in Biotecnology (RENORBIO/UFRN), Federal University of Rio Grande do Norte, Natal, RN, Brazil; wdspaiva@gmail.com

Francisco Ernesto de Souza Neto, Nova Esperança College of Mossoró

Nova Esperança College of Mossoró, Mossoró – RN, Brazil. fernestosn@gmail.com

Erika de Souza Paiva, Federal University of Piauí

Biology Science Department, Federal University of Piauí, Picos, PI, Brazil; drerikapaiva@gmail.com

References

Almutairi, F. M., El Rabey, H. A., Tayel, A. A., Alalawy, A. I., Al-Duais, M. A., Sakran, M. I. & Zidan, N. S. (2020). Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. Int J Biol Macromol, 155, 861-867.

Alves Jr, C., Vitoriano, J. O., Silva, D. L. S., Farias, M. L. & Dantas, N. B. L. (2016). Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci Rep, 6, 1-7.

Annu, S. A., Ahmed, S. & Ikram, S. (2017). Chitin and chitosan: history, composition and properties. In Chitosan: derivatives, composites and applications, Ed. Ahmed, S., Ikram, S., Beverly, M. A: Scrivener Publishing, Wiley.

Anwar, M., Anggraeni, A. S. & Al Amin, M. H. (2017). Comparison of green method for chitin deacetylation Cite as: AIP Conference Proceedings, 1823, 020071-1.

Assis, O. B. G., Vieira, D. C., Vasques, R. A. & Campana-Filho, S. P. (2002). Formed-in-place chitosan-carboxymethyl cellulose supported microfiltration membranes for water purification. in: Proceedings of the 4th ISNAPOL (Natural Polymers and Composites IV), 2002, 341.

Arcidiacono, S., Lombardi, S. J. & Kaplan, D. L. (1989). Fermentation, processing and enzyme characterization for chitosan biosynthesis by Mucor rouxii. In: Sjak-Braek, G., AnthonseN, T., Sandford, P. Chitin and chitosan: sources, chemistry, biochemistry, physical properties and applications. Elsevier, 1989. 835.

Batista, A. C. L., Souza Neto, F. E. & Paiva, W. S. (2018). Review of fungal chitosan: past, present and perspectives in Brazil. Polímeros, 28, 275-283.

Batista, A. C. L., Melo, T. B. L., Paiva, W. S., Souza, F. S., & Campos-Takaki, G. M. (2020). Economic microbiological conversion of agroindustrial wastes to fungi chitosan. An Acad Bras Ciênc, 92, 1-13.

Bento, A. R., Stamford, T. L. M., Stamford, T. C. M., Andrade, S. A. C. & Souza, E. L. (2011) Sensory evaluation and inhibition of Listeria monocytogenes in bovine pâté added of chitosan from Mucor rouxii. Leb-WissenTech, 44, 588-591.

Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., Alcantara, S. R., Silva, A. C., Silva, A. M., Nascimento, A. E. & Campos-Takaki, G. M. (2014). Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopus arrhizus and Cunninghamella elegans strains. Int J Mol Sci, 15, 9082-9102.

Berger, L. R. R., Stamford, T. C. M., Oliveira, K. A. R., Pessoa, A. M. P., Lima, M. A. B., Pintado, M. M. E., Câmara, M. P. S., Franco, L. O., Magnani, M. & Souza, E. L. (2018). Chitosan produced from mucorales fungi using agroindustrial by-products and its efficacy to inhibit colletotrichum species. Int J Biol Macromol, 108, 635–641.

Bogaerts, A., Neyts, E., Gijbels & Mullen, R. J. V. (2002). Gas discharge plasmas and their applications. Spectrochim Acta Part B at Spectrosc, 57, 609-658.

Braga, L. A. S., Flauzino Junior, A., González, M. E. L., & Queiroz, A. A. A. de. (2019). Membranas termossensíveis baseadas em redes poliméricas semi-interpenetrantes de Quitosana e Poli(N-isopropilacrilamida). Res Soc Dev, 8, e3883748.

Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrières, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569–3580.

Cardoso, A., Lins, C. I., Santos, E. R., Silva, M. C. & Campos-Takaki, G. M. (2012). Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules, 17, 4904-4914.

Chen, C., Ogino, A., Wang, X. & Nagatsu, M. (2010). Plasma treatment of multiwall carbonnanotubes for dispersion improvement in water, Appl Phys Lett, 96, 131504-131504-2.

Chumwangwapee, S., Chingsungnoen, A. & Siric, S. A. (2016). A plasma modified cellulose-chitosan porous membrane allows efficient DNA binding and provides antibacterial properties: A step towards developing a new DNA collecting card. Forensic Sci Int Genet, 25, 19-25.

Cleymand, F., Zhang, H., Dostert, G., Menu, P., Arab-Tehrany, E., Velot, E. & Mano, J. F. (2016). Membranes combining chitosan and natural-origin nanoliposomes for tissue engineering. RSC, 6, 83626–83637.

Dorraki, N., Safa, N. N., Jahanfar, M., Ghomi, H. & Ranaei-Siadat, S. (2015). Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization. Appl Surf Sci, 349, 940-947.

Faber, M. A., Pascal, M., El Kharbouchi, O., Sabato, V., Hagendorens, M. M., Decuyper, I. I., Bridts, C. H. & Ebo, D. G. (2017). Shellfish allergens: tropomyosin and beyond. Allergy, 72, 842-848.

Freier, T., Koh, H. S., Kazazian, K. & Shoichet, M. S. (2005). Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 26, 5872-5872.

Galinari, E., Sabry, D. A., Sassaki, G. L., Macedo, G. B., Passos, F. M. L., Mantovani, H. C. & Rocha, H. A. O. (2017). Chemical structure, antiproliferative and antioxidant activities of a cell wall α-d-mannan from yeast Kluyveromyce marxianus. Carbohydr Polym, 157, 1298-1305.

Galvin, S., Cahill, O., O’Connor, N., Cafolla, A. A., Daniels, S. & Humphreys, H. (2013). The antimicrobial effects of helium and helium–air plasma on Staphylococcus aureus and Clostridium difficile. Lett Appl Microbiol, 57, 83-90.

Gharieb, M. M., El-Sabbagh, S. M., Shalaby, M. A. & Darwesh, O. M. (2015). Production of chitosan from different species of zygomycetes and its antimicrobial activity. Inter J Scien Eng Res, 6, 1-5.

Ghormade, V., Pathan, E. K. & Deshpande, M. V. (2017). Can fungi compete with marine sources for chitosan production? Int J of Biol Macromol, 104, 1415-1421.

Hegemann, D. H., Brunner, H. & Oehr, C. (2003). Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys Res, B, 208, 281-286.

Hong, Y. F., Kang, J. G., Lee, H. Y., Uhm, H. S., Moon, E. & Park, Y. H. (2009). Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol, 48, 33-37.

Hu, K. J., Yeung, K. W., Ho, K. P. & Hu, K. (1999). Rapid extraction of high-quality chitosan from mycelia of Absidia glauca. J Food Biochem, 23, 187-196.

Huang, M., Khor, E. & Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharmac Res, 21, 344-353.

Kitozyme. (2020). Vegetal Chitosan: Unique, patented biopolymer from fungal origin. https://www.kitozyme.com/en/ingredients/chitosan/.

Macedo, M. O. C., Macedo, H. R. A., Silva, G. C., Silva, M. A. M. & Alves Jr., C. (2012). Estudo comparativo da modificação superficial de membranas de quitosana tratadas por plasma de oxigênio, nitrogênio e hidrogênio. REMAP, 7, 95–103.

Machala, Z., Janda, M., Hensel, K., Jedlovský, I., Leštinská, L., Foltin, V., Martišovitš, V. & Morvová, M. (2007). Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J. Mol Spectrosc, 243, 194–201.

Marques, J. S., Chagas, J. A. O. D., Fonseca, J. L. C. & Pereira, M. R. (2016). Comparing homogeneous and heterogeneous routes for ionic crosslinking of chitosan membranes. React Funct Polym, 103, 156-161.

Molina, R., Jovancio, P., Vilchez, S., Tzanov, T. & Solans. C. (2014). In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydr Polym, 103, 472–479.

Mondala, A., Al-Mubarak, R., Atkinson, J., Shields, S., Young, B., Senger, Y. S. & Pekarovic, J. (2015). Direct Solid-State Fermentation of Soybean Processing Residues for the Production of Fungal Chitosan by Mucor rouxii. J Chem Eng, 3, 11-21.

Morent, R., Eyter, N., Desmet, T., Dubruel & P., Leys, C. (2011). Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Process Polym, 8, 171-190.

Mycodev. (2020). Production. http://mycodevgroup.com.

Napartovich, A. P. (2001). Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma. Plasm Polym, 6, 1-14.

Paiva, W. S. (2017). Quitosana fúngica na produção de biomaterial membranoso modificado por plasma de descarga em barreira dielétrica (DBD). Mossoró: Federal Rural University of Semiarid, Rio Grande do Norte, Brazil. https://sigaa.ufersa.edu.br/sigaa/public/programa/defesas.jsf?lc=pt_BR&id=828 .

Paiva, W. S., Souza Neto, F. E. & Batista, A. C. L. (2014). Avaliação da atividade antibacteriana da quitosana fúngica. Persp Onl: Biol Saúde, 13, 37-43.

Paiva, W. S., Souza Neto, F. E. & Batista, A. C. L. (2017). Characterization of Polymeric Biomaterial Chitosan Extracted from Rhizopus stolonifer. J Polym Mater, 34, 115-121.

Pankaj, S. K., Bueno-Ferrer, C., O’Neil, L., Tiwari, B. K., Bourke, P. & Cullen, P. J. (2015). Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT - Food Sci Technol, 63, 1076-1082.

Pascal, M., Grishina, G., Yang, A. C., Sánchez-García, S., Lin, J., Towle, D., Ibañez, M. D., Sastre, J., Sampson, H. A. & Ayuso, R. (2015). Molecular Diagnosis of Shrimp Allergy: Efficiency of Several Allergens to Predict Clinical Reactivity. J Allergy Clin Immunol Pract. 3, 521-529.

Polymar. (2020). Nossos produtos. http://www.polymar.com.br/.

Queiroz, M. F., Melo, K. R., Sabry, D. A., Sassaki, G. L. & Rocha, H. A. O. (2015). Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar drugs, 13, 141-158.

Ren, Y., Ding, Z., Wang, C., Zang, C., Zhang, Y. & Xu, L. (2017). Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties. Appl Surf Sci, 396, 1571–1579.

Rosendo, R. A., Andrade, A. A., Figueiredo, A. B. M., Tavares, A. H. dos S., Castro, D. L. de S., Siqueira, R. R. de., Santos, A. dos., Medeiros, M. F. de., Penha, E. S. da., & Medeiros, L. A. D. M. de. (2020). Estruturas de quitosana utilizadas para regeneração óssea in vivo: uma revisão de literatura. Res Soc Dev, 9, e891974538.

Salem, T. S., Uhlmann, S., Nitschke, M., Calvimontes, A., Hund, R. & Simon, F. (2011). Modification of plasma pre-treated PET fabrics with poly-DADMAC and its surface activity towards acid dyes. Prog Org Coat, 72, 168–174.

Sasmazel, H. T. (2011). Novel hybrid scaffolds for the cultivation of osteoblast cells. Int J Biol Macromol, 49, 838-846.

Sathiyaseelan, A., Saravanakumar, K., Mariadoss, A. V. A. & Wang, M-H. (2020) Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity, Int J Biol Macromol, 15, 153-163.

Shahidi, S., Ghoranneviss, M. & Wiener, J. (2015). Improving synthetic and natural dyeability of polyester fabrics by dielectric barrier discharge, J Plast Film Sheeting, 31, 286–308.

Schipper, N. G. M., Varum, K. M. & Artursson, P. (1996). Chitosans as absorption enhancers of poorly absorbable drugs: Influence of molecular weight and degree of acetylation. Eur J Pharm Sci, 13, 1686-1692.

Signini, R. & Campana Filho, S. P. (2001). Características e propriedades de quitosanas purificadas nas formas neutra, acetato e cloridrato. Polímeros, 11, 58-64.

Silva, A. M., Stamford, T. C. M., Souza, P. M., Berger, L. R. R., Leite, M. V., Nascimento, A. E. & Campos-Takaki, G. M. (2015). Antifungal Activity of Microbiological Chitosan and Coating Treatment on Cherry Tomato (Solanum lycopersicum var. cerasiforme) to Post-Harvest Protection. Int J Curr Microbiol App Sci, 4, 228-240.

Souza Neto, F. E., Silva, H. C. A., Paiva, W. S., Torres, T. M., Rocha, A. C. P., Bezerra, A. C. D. S. & Batista, A. C. L. (2017). Quitosana fúngica sobre larvas de nematoides gastrintestinais de caprinos. Arq Inst Biol, 84, 1-5.

Stamford, T. C. M., Stamford, T. L. M., Stamford, N. P., Barros Neto, B. & Campos-Takaki, G. M. (2007). Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean médium. Electron J Biotechnol, 10, 1-6.

Synowiecki, J. & Ali-Khateeb, N. A. A. Q. (2003). Production, properties and some new applications of chitin and its derivatives. Crit Rev Food Scien Nutrit, 43, 145-171.

Tayel, A. A. (2016). Microbial chitosan as a biopreservative for fish sausages. Int J Biol Macromol, 93, 41-46.

Theapsak, S., Watthanaphanit, A., & Rujiravanit, R. (2012). Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. ACS Appl Mater Interfaces, 4, 2474−2482.

Tamburaci, S. & Tihminlioglu, F. (2017). Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Mat Sci Eng: C, 80, 222-231.

Vital, M. J. S. & Zilli, J. E. (2010). Protocolo Básico de Coleta de Amostras de Solo para Caracterização da Diversidade Microbiana. Retrieved from: http:// ppbio.inpa.gov.br/protocolos.

Zhang, Z., Xu, Z., Cheng, C., Wei, J., Lan, Y., Ni, G., Sun, Q., Qian, L., Zhang, H., Xia, W., Shen, J., Meng, Y. & Chu, P. K. (2017). Bactericidal Effects of Plasma Induced Reactive Species in Dielectric Barrier Gas–Liquid Discharge. Plasma Chem Plasma, 37, 415-431.

Zimoch-Korzycka, A., Śmieszek, A., Jarmoluk, A., Nowak, U., & Marycz, K. (2016). Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells. Polymers, 8, 320-344.

Downloads

Published

04/01/2021

How to Cite

PAIVA, W. de S.; SOUZA NETO, F. E. de .; PAIVA, E. de S. .; BATISTA, A. C. de L. . Fungal chitosan as membranous material modified by atmospheric plasma. Research, Society and Development, [S. l.], v. 10, n. 1, p. e9210111543, 2021. DOI: 10.33448/rsd-v10i1.11543. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11543. Acesso em: 26 nov. 2024.

Issue

Section

Agrarian and Biological Sciences