Effectiveness of artificial intelligence in the treatment of dental caries: An integrative review
DOI:
https://doi.org/10.33448/rsd-v10i4.13083Keywords:
Dental Caries; Artificial Intelligence; Dentistry.Abstract
The artificial intelligence (AI) is a branch of computing science which uses similar algorithms as a specialist before making any decisions and solving complex issues. In health, the benefits occur from data generation to improve management processes, identifying better treatments and helping in prevention and disclosure early-stage diseases. The purpose of this survey was to perform an integrative review on modern literature about AI to early diagnosis caries injuries, considering the benefits, limitations and impact in society and oral health. An integrative review had been done by searching 6 English scientific articles using on-line databases: PubMed, Cochrane, Scopus and Web of Science, using keywords such as: dental caries, artificial intelligence and dentistry. Moreover, other 6 articles were found by manual research indexed from 2016 to 2020, which worked with case report titled in vitro and in vivo. After eligibility criteria, 12 articles fully published in English and Portuguese were analyzed. The studies have shown that several modern methods of artificial intelligence offered exactness, ease of diagnosis and treatment effectiveness. Nevertheless, this technique has been through an experimental phase, it is required enhancement to reduce mistakes and misconception caused by this system.
References
Angelino, K., Edlund, D.A., Shah, P., et al. (2017). Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth. (5):2300107. doi: 10.1109 / JTEHM.2017.2695194.
Araújo, A. A., et al. (2020). Métodos de detecção e diagnóstico de cárie: uma revisão narrativa. Research, Society and Development. 9(10), e36291110019. doi: 10.33448/rsd-v9i10.10019.
Cruz, A. I., Gomes, Neto, M. M., Lima, W. T. S., Silva, W. A., Hora, S. L. (2020). Novos métodos de diagnóstico para detecção da cárie dental - Revisão integrativa. Research, Society and Development. 9(10, e7209109160. doi: 10.33448/rsd-v9i10.9160
Dündar, A., Çiftçi, M. E., İşman, Ö., Aktan, A. M. (2020). In vivo performance of nearinfrared light transillumination for dentine proximal caries detection in permanent teeth. The Saudi dental journal, 32(4), 187–193. https://doi: 10.1016/j.sdentj.2019.08.007
Endres, M. G., Hillen, F., Salloumis, M., Sedaghat, A. R., Niehues, S. M., Quatela, O., et al. (2020). Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs. Diagnostics (Basel). 10(6): 430. https://doi: 10.3390/diagnostics10060430.
Hung, M., Voss, M. W., Rosales, M. N., Li, W., Su, W., Xu, J., et al. (2019). Application of machine learning for diagnostic prediction of root caries. Web of Science, 36: 395–404. https://doi: 10.1111/ger.12432
Leão, Filho. J. C. B., de Souza, T. R. (2017). Métodos de detecção de cárie: do tradicional às novas tecnologias de emprego clínico. Revista de Odontologia da Universidade Cidade de São Paulo, 23(3), 253-265. Recuperado de http://publicacoes.unicid.edu.br/index.php/revistadaodontologia/article/view/385
Lee, J. H., Kim, D. H., Jeong, S. N., Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. 77: 106-111. https://doi: 10.1016/j.jdent.2018.07.015
Pereira, A. S., et al. (2018). Metodologia da Pesquisa Cientifica. (e-book). Santa Maria. Ed. UAB/NTE/UFSM.
Pingali, L. (2019). Personal oral health consultant using multimodal machine detection and learning with smartphones and cloud. (10). https://doi: 10.1109/ CCEM48484.2019.000-3
Shan, T., Tay, F. R., Gu, L. (2020). Application of Artificial Intelligence in Dentistry. SAGE Journal, 100(3):232-244. https://doi: 10.1177/0022034520969115
Schwendicke, F., Golla, T., Dreher, M., Krois, J. (2019). Convolutional neural networks for dental image diagnostics: A scoping review. 91: 103226. https://doi: 10.1016/j.jdent.2019.103226
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dayanne Karla de Carvalho; Maria Luiza Lima Costa; Esdras Gabriel Alves-Silva; Eloiza Leonardo de Melo; Marleny Elizabeth Márquez de Martínez Gerbi; Mávio Eduardo Azevedo Bispo; Renata Araújo Gomes de Sá; Maria Regina Almeida de Menezes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.