Contribution of multivariate techniques to drought rates in understanding the otto-regions of the São Francisco basin

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13118

Keywords:

Pluviometric indices; Multivariate statistics; São Francisco river.

Abstract

Objective: Use multivariate analysis techniques, in particular principal component analysis, to find the best description of drought rates, and then use cluster analysis to determine the homogeneous regions of the São Francisco River. Method: The indices to characterize the drought were calculated: Average annual maximum daily precipitation (annual max), annual average accumulated precipitation (amount), annual average of days without rain (<1 mm) (noprec), annual average of consecutive days without rain (<1 mm) (consecdry), annual average of consecutive days with rain (>=1 mm) (consecwet) and the annual average of Rainy Days with Precipitation exceeding the 90% percentile (prec90). These indices were orthogonalized using the principal component method and later grouped using the K-means method. Results: The variables amount and prec90 are the most important, and together in the first component they are responsible for 40.56%, and the variables noprec and consecwet were important to explain 31.04% in the second component, and together they explain 71.60% the total variability of the data. Through the variability of 86.40% in the first three main components retained, the technique of K-means clusters allowed the division of four homogeneous areas in the São Francisco basin. Conclusions: Four regions were observed, which are composed of the regions of the Lower and Sub-Middle São Francisco, Alto São Francisco and the Middle São Francisco, dividing into two parts that there is no perfect correspondence with the established otto-regions.

References

Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J., Farid, H. U., & Saddique, Q. (2018). Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmospheric Research, 213, 346–360.

Andrade, E. M., Paulo Cosenza, J., Pinguelli Rosa, L., & Lacerda, G. (2012). The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF. In Renewable and Sustainable Energy Reviews. 16(8), 5760–5769. Elsevier. https://doi.org/10.1016/j.rser.2012.06.028

André, R. G. B., Marques, V. da S., Pinheiro, F. M. A., & Ferraudo, A. S. (2008). Identificação de regiões pluviometricamente homogêneas no Estado do Rio de Janeiro, utilizando-se valores mensais. Revista Brasileira de Meteorologia, 23(4), 501–509. https://doi.org/10.1590/s0102-77862008000400009

Araújo, W. S., Saviano Souza, F. A., Brito, J. I. B. de, & Lima, L. M. (2012). Estudo Pluvial no Nordeste do Brasil Utilizando Análise Multivariada (Rain Study in Northeast Brazil Using Multivariate Analysis). Revista Brasileira de Geografia Física, 5(3), 448. https://doi.org/10.26848/rbgf.v5i3.232781

Aslam, M. (2020). Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment. Journal of Taibah University for Science, 14(1), 6–10.

Bezerra, B. G., Silva, L. L., Santos e Silva, C. M., & de Carvalho, G. G. (2019). Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theoretical and Applied Climatology, 135(1–2), 565–576. https://doi.org/10.1007/s00704-018-2396-6

Charleton, M. E., Brunsdon, C., Demšar, U., Harris, P., & Fotheringham, A. S. (2010). Principal Components Analysis: from Global to Local. 13th AGILE International Conference on Geographic Information Science, 1–10.

Christensen, O. B., & Christensen, J. H. (2004). Intensification of extreme European summer precipitation in a warmer climate. Global and Planetary Change, 44(1–4), 107–117. https://doi.org/10.1016/j.gloplacha.2004.06.013

Freitas, J. C., De Andrade, A. R. S., Braga, C. C., Honorato, A., Neto, G., & De Almeida, T. F. (2013). Análise de agrupamentos na identificação de regiões homogêneas de índices climáticos no Estado da Paraíba, PB – Brasil. Revista Brasileira de Geografia Física, 6(4), 732–748.

Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A. (2018). Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of The Total Environment, 634, 1540–1553. https://doi.org/10.1016/j.scitotenv.2018.03.256

Dourado, C. da S., Oliveira, S. R. de M., & de Avila, A. M. H. (2013). Análise de zonas homogêneas em séries temporais de precipitação no Estado da Bahia. Bragantia, 72(2), 192–198. https://doi.org/10.1590/S0006-87052013000200012

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science, 289(5487), 2068–2074.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

Guedes, R. S., Lopes, F. J., Amanajás, J. C., & Braga, C. C. (2010). Aplicação Da Análise Fatorial Em Componentes Principais A Dados De Precipitação No Estado Do Amapá. Revista de Geografia (Recife), 27(1), 107-119–119.

Härdle, W. K., & Simar, L. (2013). Applied multivariate statistical analysis. In Applied Multivariate Statistical Analysis (Vol. 5, Issue 8). Prentice hall Upper Saddle River, NJ. https://doi.org/10.1007/978-3-642-17229-8

Hecke, T. Van. (2012). Power study of anova versus Kruskal-Wallis test. Journal of Statistics and Management Systems, 15(2–3), 241–247.

Hu, Y., Yao, L., & Hu, Q. (2020). Evaluation of Water Resources Carrying Capacity in Jiangxi Province Based on Principal Component Analysis. Journal of Coastal Research, 105(sp1), 147–150. https://doi.org/10.2112/JCR-SI105-031.1

Koutsoyiannis, D. (2020). Revisiting the global hydrological cycle: is it intensifying? Hydrology and Earth System Sciences, 24(8), 3899–3932. https://doi.org/10.5194/hess-24-3899-2020

Maneta, M. P., Torres, M., Wallender, W. W., Vosti, S., Kirby, M., Bassoi, L. H., & Rodrigues, L. N. (2009). Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation. Agricultural Water Management, 96(8), 1191–1200. https://doi.org/10.1016/j.agwat.2009.03.008

Marston, M. L., & Ellis, A. W. (2020). Delineating Precipitation Regions of the Contiguous United States from Cluster Analyzed Gridded Data. Annals of the American Association of Geographers, 1–19. https://doi.org/10.1080/24694452.2020.1828803

Mingoti, S. A. (2007). Análise de dados através de métodos de estatística multivariada – uma abordagem aplicada. In Análise de dados através de métodos estatística multivariada: uma abordagem aplicada.

Mishra, A. K., Özger, M., & Singh, V. P. (2009). An entropy-based investigation into the variability of precipitation. Journal of Hydrology, 370(1–4), 139–154. https://doi.org/10.1016/j.jhydrol.2009.03.006

Oliveira, V. A., de Mello, C. R., Viola, M. R., & Srinivasan, R. (2017). Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil. International Journal of Climatology, 37(15), 5005–5023. https://doi.org/10.1002/joc.5138

Prado, B. Q. de M., Fernandes, H. R., Araújo, T. G., Laia, G. A., & Biase, N. G. (2016). Avaliação de variáveis climatológicas da cidade de Uberlândia (MG) por meio da análise de componentes principais. Engenharia Sanitaria e Ambiental, 21(2), 407–413. https://doi.org/10.1590/S1413-41522016147040

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.

Santos, D. C. (2015). Análise multivariada de índices climáticos na amazônia ocidental. Revista Brasileira de Climatologia, 15.

Simões, Y. de S., Silva, E. H. B. C., & Araújo, H. A. de. (2018). Rainfall zoning of Bahia State, Brazil: an update proposal. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(1), 1. https://doi.org/10.4136/ambi-agua.2171

Team, R. C. (2021). R: A language and environment for statistical computing. Vienna, Austria.

Wang, H., Shao, Z., Gao, T., Zou, T., Liu, J., & Yuan, H. (2017). Extreme precipitation event over the Yellow Sea western coast: Is there a trend? Quaternary International, 441, 1–17. https://doi.org/10.1016/j.quaint.2016.08.014

Zhang, Q., Peng, J., Xu, C. Y., & Singh, V. P. (2014). Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China. Theoretical and Applied Climatology, 115(3–4), 703–712. https://doi.org/10.1007/s00704-013-0916-y

Zhang, Q., Singh, V. P., Peng, J., Chen, Y. D., & Li, J. (2012). Spatial-temporal changes of precipitation structure across the Pearl River basin, China. Journal of Hydrology, 440–441, 113–122. https://doi.org/10.1016/j.jhydrol.2012.03.037

Zhang, Q., Xu, C. Y., Chen, X., & Zhang, Z. (2011). Statistical behaviours of precipitation regimes China and their links with atmospheric circulation 1960-2005. International Journal of Climatology, 31(11), 1665–1678. https://doi.org/10.1002/joc.2193

Ziegler, A. D., Sheffield, J., Maurer, E. P., Nijssen, B., Wood, E. F., & Lettenmaier, D. P. (2003). Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. Journal of Climate, 16(3), 535–547. https://doi.org/10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2

Zolina, O., Simmer, C., Kapala, A., Bachner, S., Gulev, S., & Maechel, H. (2008). Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. Journal of Geophysical Research Atmospheres, 113(6). https://doi.org/10.1029/2007JD008393

Published

06/03/2021

How to Cite

SANTOS, E. F. N. .; BARRETO, I. D. de C.; BARBOSA, E. A. S. .; CAMPOS, L. .; SILVA, A. S. A. da . Contribution of multivariate techniques to drought rates in understanding the otto-regions of the São Francisco basin. Research, Society and Development, [S. l.], v. 10, n. 3, p. e7210313118, 2021. DOI: 10.33448/rsd-v10i3.13118. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13118. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences