Candida genus - Virulence factores, Epidemiology, Candidiasis and Resistance mechanisms

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.14283

Keywords:

Candida albicans; C. non-albicans; Candidiasis; Virulence factors; Resistance mechanisms.

Abstract

The genus Candida is found symbiotically living in the microbiota of the reproductive and gastrointestinal mucosa of 50-70% of healthy individuals, under certain conditions these microorganisms can become pathogenic, to the point of becoming the third cause of septicemia worldwide. They can cause superficial infections, affecting mucous membranes and skin, as well as invasive infections, in organs and deep tissues such as intestines, lungs and blood. The most isolated species in infections caused by the genus is Candida albicans, however the isolation of species of Candida non-albicans, such as C. glabrata, C. krusei, C. tropicalis and C. parapsilosis is increasingly recurrent. In addition, C. albicans and C. non-albicans species have been increasingly reported due to the emergence of resistance to antifungal agents for clinical use, making it difficult to treat infections caused by these strains. This work aimed to gather updated information about the genus Candida on virulence factors, epidemiology, candidiasis, treatments and resistance mechanisms.

References

Akins, R. A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, 43(4), 285-318.

Al-Fattani, M. A., & Douglas, L. J. (2006). Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. Journal of Medical Microbiology, 55(8), 999-1008.

Balashov, S. V., Park, S., & Perlin, D. S. (2006). Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrobial Agents of Chemotherapy, 50, 2058–2063.

Birnbaum, J. E. (1990). Pharmacology of the allylamines. Journal of the American Academy of Dermatology, 23(4), 782-785.

Bulatova, N. R., & Darwish, R. M. (2008). Effect of chemosensitizers on minimum inhibitory concentrations of fluconazole in Candida albicans. Medical Principles and Practice, 17(2), 117-121.

Calderone, R. A., & Clancy, C. J. (Eds.). (2011). Candida and candidiasis. American Society for Microbiology Press.

Cambuim, I. I., Macêdo, D. P., Delgado, M., Lima, K. M., Mendes, G. P., Souza-Motta, C. M., Lima, D. M., Fernandes, M. J., Magalhães, O. M., Queiroz, L. A., & Neves, R. P. (2011). Clinical and mycological evaluation of onychomycosis among Brazilian HIV/AIDS patients. Revista da Sociedade Brasileira de Medicina Tropical, 44(1), 40-42.

Castanheira, M., Messer, S. A., Rhomberg, P. R., & Pfaller, M. A. (2016). Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagnostic Microbiology and Infectious Disease, 85, 200-204.

Cannon, R. D., Lamping, E., Holmes, A. R., Niimi, K., Baret, P. V., Keniya, M. V., ... & Monk, B. C. (2009). Efflux-mediated antifungal drug resistance. Clinical microbiology reviews, 22(2), 291-321.

Cauchie, M., Desmet, S., & Lagrou, K. (2017). Candida and its dual lifestyle as a commensal and a pathogen. Research in Microbiology, 168(9-10), 802-810.

Cohen, B. E. (2010). Amphotericin B membrane action: role for two types of ion channels in eliciting cell survival and lethal effects. The Journal of Membrane Biology, 238(1-3), 1-20.

Dermawan, J. K. T., Ghosh, S., Keating, M. K., Gopalakrishna, K. V., & Mukhopadhyay, S. (2018). Candida pneumonia with severe clinical course, recovery with antifungal therapy and unusual pathologic findings: A case report. Medicine, 97(2), e9650, 2018.

Dick, J. D., Merz, W. G., & Saral, R. (1980) Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrobial Agents of Chemotherapy, 18, 158-63.

Doi, A. M., Pignatari, A. C., Edmond, M. B., Marra, A. R., Camargo, L. F., Siqueira, R. A., Mota, V. P., & Colombo, A. L. (2016). Epidemiology and microbiologic characterization of nosocomial candidemia from a Brazilian national surveillance program. PloS one, 11(1), e0146909.

Eddouzi, J., Parker, J. E., Vale-Silva, L. A., Coste, U. M., Ischer, F., Kelly, S., Manai, H., & Sanglard, D. (2013). Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrobial Agents of Chemotherapy, 57(7), 3182–3193.

Emri, T., Majoros, L., Tóth, V., & Pócsi, I. (2013). Echinocandins: production and applications. Applied Microbiology and Biotechnology, 97(8), 3267-3284.

Fernandes, T., Silva, S., & Henriques, M. (2015). Candida tropicalis biofilm's matrix—involvement on its resistance to amphotericin B. Diagnostic Microbiology and Infectious Disease, 83(2), 165-169.

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology. 8, 623–633.

Hani, L., Shivakumar, H. G., Vaghela, R., Osmani, R. A., & Shrivastava, A. (2015). Candidiasis: a fungal infection-current challenges and progress in prevention and treatment. Infectious Disorders-Drug Targets, 15, 42-52.

Hellstein, J. W., & Marek, C. L. (2019). Candidiasis: Red and White Manifestations in the Oral Cavity. Head and Neck Pathology, 13(1), 25-32.

Henry, K. W., Nickels, J. T., & Edlind, T. D. (2000). Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrobial Agents and Chemotherapy, 44(10), 2693-2700.

Kanafani, Z. A., & Perfect, J. R. (2008). Resistance to antifungal agents: mechanisms and clinical impact. Clinical infectious diseases, 46(1), 120-128.

Kelly, S. L.; Lamb, D. C.; Kelly, D. E.; Loeffler, J.; Einsele, H. (1996). Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet, 348(9040), 1523–1524.

Kelly, S. L.; Lamb, D. C.; Kelly, D. E.; Manning, N. J.; Loeffler, J.; Hebart, H.; Schumacher, U.; Einsele H. (1997). Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta-5,6-desaturation. FEBS Letters, 400(1), 80–82.

Kristanc, L., Božič, B., Jokhadar, Š. Z., Dolenc, M. S., x Gomišček, G. (2019). The pore-forming action of polyenes: From model membranes to living organisms. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(2), 418-430.

Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740.

Kordalewska, M., Lee, A., Park, S., Berrio, I., Chowdhary, A., Zhao, Y., & Perlin, D. S. (2018). Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrobial Agents and Chemotherapy, 62(6), e00238-18.

Knoke, M., & Bernhardt, H. (2006). The first description of an oesophageal candidosis by Bernhard von Langenbeck in 1839. Mycoses, 49(4), 283–287.

Kullberg, B. J., & Arendrup, M. C. (2015). Invasive candidiasis. New England Journal of Medicine, 373(15), 1445-1456.

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.

Martins, N., Ferreira, I. C., Barros, L., Silva, S., & Henriques, M. (2014). Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathology, 177(5-6), 223-240.

Marichal, P., Koymans, L., Willemsens, S., Bellens, D., Verhasselt, P., Luyten, W., Borgers, M., Ramaekers, F. C. S., Odds, F. C., Vanden Bossche, H. (1999). Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology, 145(10), 2701-2713.

Monod, M., & Borg-Von Zepelin, M. (2002). Secreted aspartic proteases as virulence factors of Candida species. Biological Chemistry, 383(7-8), 1087-1093.

Modrzewska, B., & Kurnatowski, P. (2013). Selected pathogenic characteristics of fungi from the genus Candida. Annals Parasitology, 59(2), 57-66.

Niimi, K., Maki, K., Ikeda, F., Holmes, A. R., Lamping, E., Niimi, M., Monk, B. C., & Cannon, R. D. (2006). Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrobial Agents and Chemotherapy, 50, 1148–1155.

Onishi, J., Meinz, M., Thompson, J., Curotto, J., Dreikorn, S., Rosenbach, M., Douglas, C., Abruzzo, G., Flattery, A., Kong, L., Cabello, A., Vicente, F., Pelaez, F., Diez, M. T., Martin, I., Bills, G., Giacobbe, R., Dombrowski, A., Schwartz , R., Morris, S., Harris, G., Tsipouras, A., Wilson, K., & Kurtz, M. B. (2000). Discovery of novel antifungal (1, 3)-β-D-glucan synthase inhibitors. Antimicrobial Agents and Chemotherapy, 44(2), 368-377.

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4, 18026.

Park, S., Kelly, R., Kahn, J. N., Robles, J., Hsu, M. J., Register, E., Li, W., Vyas, V., Fan, H., Abruzzo, G., Flattery, A., Gill, C., Chrebet, G., Parent, S. A., Kurtz, M., Teppler, H., Douglas, C. M., & Perlin, D. S. (2005). Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrobial Agents and Chemotherapy, 49, 3264–3273.

Perlin, D. S. (2011). Current perspectives on echinocandin class drugs. Future Microbiology, 6, 441–457.

Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases, 17, e383-e392.

Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology, 45, 321–346.

Pfaller, M. A., Diekema, D. J., Gibbs, D. L., Newell, V. A., Ellis, D., Tullio, V., Rodloff, A., Fu, W., Ling, T. A., & the Global Antifungal Surveillance Group. (2010). Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. Journal of Clinical Microbiology, 48, 1366-1377.

Polke, M., Hube, B., & Jacobsen, I. D. (2015). Candida survival strategies. Advances in Applied Microbiology, 91, 139-235.

Poulain, D. (2015). Candida albicans, plasticity and pathogenesis. Critical Reviews in Microbiology, 41(2), 208-217.

Prasad, R., Shah, A. H., & Rawal, M. K. (2016). Antifungals: mechanism of action and drug resistance. Yeast Membrane Transport, p. 327-349.

Pristov, K. E., & Ghannoum, M. A. (2019). Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection, 25(7),792-798.

Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2007). Farmacologia. 6ª edição. Rio de Janeiro: Guabanara, Koogan AS.

Rodrigues, C. F., Rodrigues, M. E., Silva, S., & Henriques, M. (2017). Candida glabrata biofilms: how far have we come? Journal of Fungi, 3, e11.

Ruping, M. J., Vehreschild, J. J., & Cornely, O. A. (2008). Patients at high risk of invasive fungal infections: when and how to treat. Drugs, 68, 1941–1962.

Sanglard, D., Kuchler, K., Ischer, F., Pagani, J. L., Monod, H., & Bille, J. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrobial Agents and Chemotherapy, 39, 2378–2386.

Sanglard, D., Ischer, F., Koymans, L., & Bille J. (1998). Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 42(2), 241-253.

Schaller, M., Borelli, C., Korting, H. C., & Hube, B. (2005). Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses, 48(6), 365-377.

Serhan, G, Stack, C. M., Perrone, G. G., & Morton, C. O. (2014). The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Annals of Clinical Microbiology and Antimicrobials, 13(1), 18.

Shapiro, R. S., Robbins, N., & Cowen, L. E. (2011). Regulatory circuitry governing fungal development, drug resistance and disease. Microbiology and Molecular Biology Reviews, 75(2), 213-267.

Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W., & Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews, 36(2), 288-305.

Silva, S. L., Lima, M. E. de, Santos, R. D. T. dos, & Lima, E. de O. (2020). Onicomicoses por fungos do gênero Candida: uma revisão de literatura. Research, Society and Development, 9(8), e560985771. https://doi.org/10.33448/rsd-v9i8.5771

Sokol-Anderson, M. L., Brajtburg, J., & Medoff, G. (1986). Amphotericin B-induced oxidative damage and killing of Candida albicans. Journal of Infectious Diseases, 154(1), 76-83.

Sudbery, P. E. (2011). Growth of Candida albicans hyphae. Nature Reviews Microbiology, 9(10), 737-748.

Thompson, D. S., Carlisle, P. L., & Kadosh, D. (2011). Coevolution of morphology and virulence in Candida species. Eukaryotic cell, 10(9), 1173-1182.

Vazquez, J. A., Arganoza, M. T., Boikov, D., Yoon, S., Sobel, J. D., & Akins, R. A. (1998). Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. Journal of Clinical Microbiology, 36(9), 2690-2695.

Vázquez‐González, D., Perusquía‐Ortiz, A. M., Hundeiker, M., & Bonifaz, A. (2013). Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 11(5), 381-394.

Vandeputte, P., Tronchin, G., Berges, T., Hennequin, C., Chabasse, D., & Bouchara, J. P. (2007). Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrobial Agents and Chemotherapy, 51(3), 982–990.

Vermes, A., Guchelaar, H.-J., & Dankert, J. (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 46(2), 171-179,

Vincent, B. M., Lancaster, A. K., Scherz-Shouval, R., Whitesell, L., & Lindquist S. (2013). Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biology, 11(10), e1001692.

Wani, M. Y., Ahmad, A., Kumar, S., & Sobral, A. J. (2017). Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microbial Pathogenesis, 105, 57-62.

Xie, J. L., Polvi, E. J., Shekhar-Guturja, T., & Cowen, L. E. (2014). Elucidating drug resistance in human fungal pathogens. Future Microbiology, 9(4), 523-542.

Published

17/04/2021

How to Cite

ROCHA, W. R. V. da; NUNES, L. E. .; NEVES, M. L. R. .; XIMENES, E. C. P. de A.; ALBUQUERQUE, M. C. P. de A. Candida genus - Virulence factores, Epidemiology, Candidiasis and Resistance mechanisms. Research, Society and Development, [S. l.], v. 10, n. 4, p. e43910414283, 2021. DOI: 10.33448/rsd-v10i4.14283. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14283. Acesso em: 7 jan. 2025.

Issue

Section

Review Article