Allelopathy, toxicity and phytochemical profile of aqueous extracts from Aspidosperma pyrifolium and Combretum leprosum

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.14568

Keywords:

Mofumbo; Pereiro; Caatinga; Metabolites.

Abstract

This study characterizes the allelopathic effect in the germination of Allium cepa seeds, and toxic on the species Artemia salina, of aqueous extracts of leaves of Aspidosperma pyrifolium and Combretum leprosum and the constituent phytochemical compositions. For this, Allium cepa seeds were germinated in systems containing aqueous extracts (200, 400 and 800 mg.L-1) and distilled water, to evaluate aspects of germination, mitotic phases, mitotic index and limit value of cytotoxicity. The toxicity of the aqueous extracts was evaluated in Artemia salina. The extracts were evaluated qualitatively and quantitatively when the substances present to define the phytochemical profile. The aqueous extract of A. pyrifolium negatively affects the germination process in the hypocotyl and seedling growth at 800 mg.L-1. The LC50 found for the aqueous extract of A. pyrifolium was 4986 mg.L-1. The effect of C. leprosum extract on germination resulted in an increase in the dry matter of the root at 400 mg.L-1 and in the density of the dry matter of the root at 800 mg.L-1. In addition, it reduces the seedling matter at 200 mg.L-1, corresponding to the trend observed in the mitotic index, in which this concentration presented a sublethal score for the limit value of cytotoxicity. The maximum concentration evaluated was not sufficient to determine an LC50 in A. salina. The phytochemical profiles of both species demonstrated classes of substances with potential pharmacological application. This information is important because these species are commonly used as food for farm animals and for purposes in folk medicine.

References

Agra, M. d. F., Baracho, G. S., Nurit, K., Basílio, I. J. L. D., & Coelho, V. P. M. (2007). Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethopharmacol, 111(2), 383-395. https://doi.org/10.1016/j.jep.2006.12.007

Ajasa, A. M. O., Bello, M. O., Ibrahim, A. O., Ogunwande, I. A., & Olawore, N. O. (2004). Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem., 85(1), 67-71. https://doi.org/10.1016/j.foodchem.2003.06.004

Akinboro, A., & Bakare, A. A. (2007). Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. J Ethopharmacol, 112(3), 470-475. https://doi.org/10.1016/j.jep.2007.04.014

Albuquerque, U. P., Medeiros, P. M., Almeida, A. L. S., Monteiro, J. M., Neto, E. M. d. F. L., Melo, J. G., & Santos, J. P. (2007). Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethopharmacol, 114(3), 325-354. https://doi.org/10.1016/j.jep.2007.08.017

Almeida, C. F. C. B. R., Lima e Silva, T. C., Amorim, E. L. C., Maia, M. B. S., & Albuquerque, U. P. (2005). Life strategy and chemical composition as predictors of the selection of medicinal plants from the caatinga (Northeast Brazil). J Arid Environ, 62(1), 127-142. https://doi.org/10.1016/j.jaridenv.2004.09.020

Ammar, R. B., Kilani, S., Bouhlel, I., Ezzi, L., Skandrani, I., Boubaker, J., Sghaier, M. B., Naffeti, A., Mahmoud, A., Chekir-Ghedira, L., & Ghedira, K. (2008). Antiproliferative, Antioxidant, and Antimutagenic Activities of Flavonoid-Enriched Extracts from (Tunisian) Rhamnus alaternus L.: Combination with the Phytochemical Composition. Drug Chem. Toxicol., 31(1), 61-80. https://doi.org/http://10.1080/01480540701688725

Ananthi, R., Chandra, N., Santhiya, S. T., & Ramesh, A. (2010). Genotoxic and antigenotoxic effects of Hemidesmus indicus R. Br. root extract in cultured lymphocytes. J Ethopharmacol, 127(2), 558-560. https://doi.org/10.1016/j.jep.2009.10.034

Antosiewicz, D. (1990). Analysis of the cell cycle in the root meristem of Allium cepa under the influence of ledakrin. Folia Histochemica et Cytobiologica, 28(1-2), 79-95.

Araújo, D. P., Nogueira, P. C. N., Santos, A. D. C., Costa, R. d. O., Lucena, J. D., Jataí Gadelha-Filho, C. V., Lima, F. A. V., Neves, K. R. T., Leal, L. K. A. M., Silveira, E. R., & Viana, G. S. B. (2018). Aspidosperma pyrifolium Mart: neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson's disease model in rats. Journal of Pharmacy and Pharmacology, 70(6), 787-796. https://doi.org/doi:10.1111/jphp.12866

Barbosa, W. L. R., Quignard, E., Tavares, I. C. C., Pinto, L. N., Oliveira, F. Q., & Oliveira, R. M. (2004). Manual para análise fitoquímica e cromatográfica de extratos vegetais. Revista científica da UFPA, 4(5), 1-19.

Bhadoria, P. (2011). Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7. https://doi.org/10.9734/ajea/2011/002

Borges, C. S., Cuchiara, C. C., Silva, S. D. A., & Bobrowski, V. L. (2011). Efeitos citotóxicos e alelopáticos de extratos aquosos de Ricinus communis utilizando diferentes bioindicadores. Embrapa Clima Temperado-Artigo em periódico indexado (ALICE). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/55173/1/artigo1.pdf

Brasil. (2009). Regras para análise de sementes (1 ed.). Ministério da Agricultura, Pecuária e Abastecimento. Retrieved from https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf

Carballo, J. L., Hernández-Inda, Z. L., Pérez, P., & García-Grávalos, M. D. (2002). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol, 2(1), 17. https://doi.org/10.1186/1472-6750-2-17

Chukwujekwu, J. C., & Van Staden, J. (2014). Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S. Afr. J. Bot., 92, 147-150. https://doi.org/10.1016/j.sajb.2014.03.001

Esteban, R., Moran, J. F., Becerril, J. M., & García-Plazaola, J. I. (2015). Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exper Bot, 119, 63-75. https://doi.org/10.1016/j.envexpbot.2015.04.009

Evaristo, F. F. V., Albuquerque, M. R. J. R., dos Santos, H. S., Bandeira, P. N., Ávila, F. N., Silva, B. R., Vasconcelos, A. A., Rabelo, É. M., Nascimento-Neto, L. G., Arruda, F. V. S., Vasconcelos, M. A., Carneiro, V. A., Cavada, B. S., & Teixeira, E. H. (2014). Antimicrobial Effect of the Triterpene 3β,6β,16β-Trihydroxylup-20(29)-ene on Planktonic Cells and Biofilms from Gram Positive and Gram Negative Bacteria. BioMed Res. Int, 2014, 1-7, Article 729358. https://doi.org/10.1155/2014/729358

Evaristo, F. F. V., Vasconcelos, M. A., Arruda, F. V. S., Pereira, A. L., Andrade, A. L., Alencar, D. B., Nascimento, M. F., Sampaio, A. H., Saker-Sampaio, S., & Bandeira, P. N. (2017). Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β, 6β, 16β-trihydroxylup-20 (29)-ene from Combretum leprosum. Med. Chem. Res., 26(12), 3296-3306. https://doi.org/10.1007/s00044-017-2022-7

Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R., & Hufford, C. D. (1993). Triterpenes and flavonoids from Combretum leprosum. Phytochemistry, 32(2), 411-415. https://doi.org/10.1016/S0031-9422(00)95005-2

Facundo, V. A., Rios, K. A., Medeiros, C. M., Militão, J. S. L. T., Miranda, A. L. P., Epifanio, R. d. A., Carvalho, M. P., Andrade, A. T., Pinto, A. C., & Rezende, C. M. (2005). Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J Brazil Chem Soc, 16(6B), 1309-1312. https://doi.org/10.1590/S0103-50532005000800002

Ferreira, A. G., & Aquila, M. E. A. (2000). Alelopatia: uma área emergente da ecofisiologia. Rev Bras Fisiol Veg, 12(1), 175-204. Retrieved from https://www.uv.mx/personal/tcarmona/files/2010/08/Gui-y-Alvez-19991.pdf

FISKESJÖ, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

Francis, F. J. (1982). Analysis of anthocyanins. In Anthocyanins as food colors (pp. 181-207). Academic Press, New York, NY.

Giri, A., Khynriam, D., & Prasad, S. B. (1998). Vitamin C mediated protection on cisplatin induced mutagenicity in mice. Mutat Res-Fund Mol M, 421(2), 139-148. https://doi.org/10.1016/s0027-5107(98)00158-4

Guarrera, M., Turbino, L., & Rebora, A. (2001). The anti‐inflammatory activity of azulene. J Eur Acad Dermatol, 15(5), 486-487. https://doi.org/10.1046/j.1468-3083.2001.00340.x

Guerra, M., & Souza, M. J. (2002). Como observar cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. Ribeirão Preto, São Paulo: FUNPEC. Retrieved from http://www.ensp.fiocruz.br/portal-ensp/_uploads/documentos-pessoais/documento-pessoal_52172.pdf

Haider, S., Naithani, V., Barthwal, J., & Kakkar, P. (2004). Heavy Metal Content in Some Therapeutically Important Medicinal Plants [journal article]. B Environ Contam Tox, 72(1), 119-127. https://doi.org/10.1007/s00128-003-0249-0

Horinouchi, C. D. S., Mendes, D. A. G. B., Silva Soley, B., Pietrovski, E. F., Facundo, V. A., Santos, A. R. S., Cabrini, D. A., & Otuki, M. F. (2013). Combretum leprosum Mart. (Combretaceae): potential as an antiproliferative and anti-inflammatory agent. J Ethnopharmacol, 145(1), 311-319. https://doi.org/10.1016/j.jep.2012.10.064

Ivanova, D., Gerova, D., Chervenkov, T., & Yankova, T. (2005). Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol, 96(1-2), 145-150. https://doi.org/10.1016/j.jep.2004.08.033

Kaur, P., Kaur, S., Kumar, N., Singh, B., & Kumar, S. (2009). Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L. Toxicol in vitro, 23(4), 680-686. https://doi.org/10.1016/j.tiv.2009.01.019

Kaur, S. J., Grover, I. S., & Kumar, S. (2000). Modulatory effects of a tannin fraction isolated from Terminalia arjuna on the genotoxicity of mutagens in Salmonella typhimurium. Food Chem Toxicol, 38(12), 1113-1119. https://doi.org/10.1016/S0278-6915(00)00104-6

Kostova, I. (2006). Synthetic and natural coumarins as antioxidants. Mini-Rev Med Chem, 6(4), 365-374. https://doi.org/10.2174/138955706776361457

Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agr Food Chem, 45(4), 1390-1393. https://doi.org/10.1021/jf960282f

Lee, S.-J., Sung, J.-H., Lee, S.-J., Moon, C.-K., & Lee, B.-H. (1999). Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer lett, 144(1), 39-43. https://doi.org/10.1016/s0304-3835(99)00188-3

Leme, D. M., Angelis, D. F., & Marin-Morales, M. A. (2008). Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquat Toxicol, 88(4), 214-219. https://doi.org/10.1016/j.aquatox.2008.04.012

Lima, M. C. J. S., & Soto-Blanco, B. (2010). Poisoning in goats by Aspidosperma pyrifolium Mart.: Biological and cytotoxic effects. Toxicon, 55(2-3), 320-324. https://doi.org/10.1016/j.toxicon.2009.08.004

Lira, S. R. d. S., Almeida, R. N., Castro Almeida, F. R., Sousa Oliveira, F., & Duarte, J. C. (2002). Preliminary studies on the analgesic properties of the ethanol extract of Combretum leprosum. Pharm Biol, 40(3), 213-215. https://doi.org/10.1076/phbi.40.3.213.5837

Longhi-Balbinot, D. T., Lanznaster, D., Baggio, C. H., Silva, M. D., Cabrera, C. H., Facundo, V. A., & Santos, A. R. S. (2012). Anti-inflammatory effect of triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene obtained from Combretum leprosum Mart & Eich in mice. J Ethnopharmacol, 142(1), 59-64. https://doi.org/10.1016/j.jep.2012.04.013

Lopes, L. S., Marques, R. B., Pereira, S. S., Ayres, M. C. C., Chaves, M. H., Cavalheiro, A. J., Vieira Júnior, G. M., & Almeida, F. R. C. (2010). Antinociceptive effect on mice of the hydroalcoholic fraction and (-) epicatechin obtained from Combretum leprosum Mart & Eich. Brazilian Journal of Medical and Biological Research, 43(12), 1184-1192. https://doi.org/10.1590/S0100-879X2010007500121

Luz, A. C., Pretti, I. R., Dutra, J. C. V., & Batitucci, M. C. P. (2012). Evaluation of the cytotoxic and genotoxic potential of Plantago major L. in test systems in vivo. Rev Bras Pl Med, 14(4), 635-642. https://doi.org/10.1590/S1516-05722012000400010

Maciel, M. A. M., Pinto, A. C., Veiga Jr, V. F., Grynberg, N. F., & Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidisciplinares. Quim nova, 25(3), 429-438. https://doi.org/10.1590/S0100-40422002000300016

Matos, F. J. A. (2009). Introdução à fitoquímica experimental (3 ed.). Edições UFC.

Matsumoto, R. S., Ribeiro, J. P. N., Takao, L. K., & Lima, M. I. S. (2010). Allelopathic potential of leaf extract of Annona glabra L.(Annonaceae). Acta Bot Bras, 24(3), 631-635. https://doi.org/10.1590/S0102-33062010000300005

Medeiros, R. M. T., Neto, S. A. G., Riet-Correa, F., Schild, A. L., & Sousa, N. L. (2004). Mortalidade embrionária e abortos em caprinos causados por Aspidosperma pyrifolium. Pesqui Vet Bras, 24(sSupl).

Melo, J. G., Rodrigues, M. D., Nascimento, S. C., Amorim, E. L. C., & Albuquerque, U. P. (2017). Cytotoxicity of plants from the Brazilian semi-arid region: A comparison of different selection approaches. South African Journal of Botany, 113, 47-53. https://doi.org/10.1016/j.sajb.2017.07.013

Melo, J. I. M., & Andrade, W. M. (2007). Boraginaceae s.l. A. Juss. em uma área de Caatinga da ESEC Raso da Catarina, BA, Brasil. Acta Bot Bras, 21, 369-378. https://doi.org/10.1590/S0102-33062007000200011

Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med, 45(05), 31-34. https://doi.org/10.1055/s-2007-971236

Mitaine-Offer, A.-C., Sauvain, M., Valentin, A., Callapa, J., Mallié, M., & Zèches-Hanrot, M. (2002). Antiplasmodial activity of Aspidosperma indole alkaloids. Phytomedicine, 9(2), 142-145. https://doi.org/10.1078/0944-7113-00094

Morgan, D. O. (2006). The Cell Cycle: Principles of Control New Science Press. Ltd.

Mors, W. B., Nascimento, M. C., Pereira, B. M. R., & Pereira, N. A. (2000). Plant natural products active against snake bite—the molecular approach. Phytochemistry, 55(6), 627-642. https://doi.org/10.1016/S0031-9422(00)00229-6

Muñoz, V., Sauvain, M., Bourdy, G., Arrazola, S., Callapa, J., Ruiz, G., Choque, J., & Deharo, E. (2000). A search for natural bioactive compounds in Bolivia through a multidisciplinary approach part III. Evaluation of the antimalarial activity of plants used by Altenos Indians. J Ethnopharmacol, 71(1-2), 123-131. https://doi.org/10.1016/S0378-8741(99)00191-9

Nogueira, P. C. N., Araújo, R. M., Viana, G. S. B., Araújo, D. P., Braz Filho, R., & Silveira, E. R. (2014). Plumeran alkaloids and glycosides from the seeds of Aspidosperma pyrifolium mart. J Brazil Chem Soc, 25(11), 2108-2120. https://doi.org/10.5935/0103-5053.20140204

Noldin, V. F., Filho, V. C., Monache, F. D., Benassi, J. C., Christmann, I. L., Pedrosa, R. C., & Yunes, R. A. (2003). Composição química e atividades biológicas das folhas de Cynara scolymus L. (alcachofra) cultivada no Brasil. Quim nova, 26(3), 331-334. https://doi.org/10.1590/S0100-40422003000300008

Nunes, A. R., Rodrigues, A. L. M., de Queiróz, D. B., Vieira, I. G. P., Neto, J. F. C., Junior, J. T. C., Tintino, S. R., de Morais, S. M., & Coutinho, H. D. M. (2018). Photoprotective potential of medicinal plants from Cerrado biome (Brazil) in relation to phenolic content and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology, 189, 119-123. https://doi.org/10.1016/j.jphotobiol.2018.10.013

Nunes, P. H. M., Cavalcanti, P. M. S., Galvao, S. M. P., & Martins, M. C. C. (2009). Antiulcerogenic activity of Combretum leprosum. Pharmazie, 64(1), 58-62. https://doi.org/10.1691/ph.2008.8652

Odin, A. P. (1997). Vitamins as antimutagens: advantages and some possible mechanisms of antimutagenic action. Mutat Res-Rev Mutat, 386(1), 39-67. https://doi.org/10.1016/S1383-5742(96)00044-0

Panda, B. B., & Sahu, U. K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfothion. Cytobios, 42, 147-115.

Parsons, A. F., & Williams, D. A. J. (2000). Radical cyclisation reactions leading to polycyclics related to the Amaryllidaceae and Erythrina alkaloids. Tetrahedron, 56(37), 7217-7228. https://doi.org/10.1016/S0040-4020(00)00646-3

Paulino, R. d. C., Henriques, G. P., Moura, O. N. S., Coelho, M. d. F. B., & Azevedo, R. A. B. (2012). Medicinal plants at the Sítio do Gois, Apodi, Rio Grande do Norte State, Brazil. Rev Bras Farmacogn, 22(1), 29-39. https://doi.org/10.1590/S0102-695X2011005000203

Pereira, W. A., Sávio, F. L., Borém, A., & Dias, D. C. F. S. (2009). Influence of the seed arrangement, number and size of soybean seed on seeling length test. Rev Bras Sementes, 31(1), 113-121. https://doi.org/10.1590/S0101-31222009000100013

Perez-Carreon, J. I., Cruz-Jiménez, G., Licea-Vega, J. A., Popoca, E. A., Fazenda, S. F., & Villa-Treviño, S. (2002). Genotoxic and anti-genotoxic properties of Calendula officinalis extracts in rat liver cell cultures treated with diethylnitrosamine. Toxicol in vitro, 16(3), 253-258. https://doi.org/10.1016/S0887-2333(02)00005-X

Pietta, P.-G. (2000). Flavonoids as antioxidants. J Nat Prod, 63(7), 1035-1042. https://doi.org/10.1021/np9904509

Rodriguez, A. G., Teixeira, O. M., Salles, F. G., Vital, J. P., & Peixoto, D. S. (2010). Bioensaio dom Artemia Salina para Detecção de Toxinas em Alimentos Vegetais. Revista EVS - Revista de Ciências Ambientais e Saúde, 36(4), 14. https://doi.org/10.18224/est.v36i4.1130

Sarkar, A., Basak, R., Bishayee, A., Basak, J., & Chatterjee, M. (1997). β-Carotene inhibits rat liver chromosomal aberrations and DNA chain break after a single injection of diethylnitrosamine. Brit J Cancer, 76(7), 855-861. https://doi.org/10.1038/bjc.1997.475

Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Crit Rev Food Sci, 32(1), 67-103. https://doi.org/10.1080/10408399209527581

Sharma, C. (1983). Plant meristems as monitors of genetic toxicity of environmental chemicals. Current science, 1000-1002. Retrieved from https://www.jstor.org/stable/24086355?seq=1

Silva, D. S. B. S., Barboza, B., Garcia, A. C. F. S., de Oliveira, B., Estevam, C. S., Neto, V. A., Santos, A. L. L. M., Dias, A. S., Scher, R., & Pantaleao, S. M. (2013). Investigation of protective effects of Erythrina velutina extract against MMS induced damages in the root meristem cells of Allium cepa. Rev Bras Farmacogn, 23(2), 273-278. https://doi.org/10.1590/S0102-695X2013005000006

Solis, P. N., Wright, C. W., Anderson, M. M., Gupta, M. P., & Phillipson, J. D. (1993). A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med, 59(03), 250-252. https://doi.org/10.1055/s-2006-959661

Teles, C. B., Moreira, L. S., Silva, A. d. A., Facundo, V. A., Zuliani, J. P., Stábeli, R. G., & Silva-Jardim, I. (2011). Activity of the Lupane isolated from Combretum leprosum against Leishmania amazonensis promastigotes. J Brazil Chem Soc, 22(5), 936-942. https://doi.org/10.1590/S0103-50532011000500017

Torres, A. L., Boiça Júnior, A. L., Medeiros, C. A. M., & Barros, R. (2006). Efeito de extratos aquosos de Azadirachta indica, Melia azedarach e Aspidosperma pyrifolium no desenvolvimento e oviposição de Plutella xylostella. Bragantia, 447-457. https://doi.org/10.1590/S0006-87052006000300011

Trindade, R. C. P., Silva, P. P., Araújo-Júnior, J. X., Lima, I. S., Paula, J. E., & Sant'Ana, A. E. G. (2008). Mortality of Plutella xylostella larvae treated with Aspidosperma pyrifolium ethanol extracts. Pesq Agropec Bras, 43(12), 1813-1816. https://doi.org/10.1590/S0100-204X2008001200024

Varnero M, M. T., Rojas A, C., & Orellana R, R. (2007). Índices de fitotoxicidad en residuos orgánicos durante el compostaje. Rev Cienc Suelo Nutr, 7, 28-37. https://doi.org/10.4067/S0718-27912007000100003

Yıldız, M., Ciğerci, İ. H., Konuk, M., Fidan, A. F., & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75(7), 934-938. https://doi.org/10.1016/j.chemosphere.2009.01.023

Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotox Environ Safe, 76, 182-186. https://doi.org/10.1016/j.ecoenv.2011.09.019

Zampini, I. C., Villarini, M., Moretti, M., Dominici, L., & Isla, M. I. (2008). Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav. J Ethnopharmacol, 115(2), 330-335. https://doi.org/10.1016/j.jep.2007.10.007

Zhai, S., Dai, R., Friedman, F. K., & Vestal, R. E. (1998). Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab Dispos, 26(10), 989-992. https://dmd.aspetjournals.org/content/26/10/989

Zucconi, F. (1981). Evaluating toxicity of immature compost. Biocycle, 22(2), 54-57.

Downloads

Published

23/04/2021

How to Cite

PEREIRA, J. C. da S.; PAIVA, . K. M. .; MELO, N. J. de A.; BARBOSA, T. N. .; MORAIS , P. L. D. de; VAEZ, J. R.; TORRES, S. B.; SOUSA, M. A. N. de. Allelopathy, toxicity and phytochemical profile of aqueous extracts from Aspidosperma pyrifolium and Combretum leprosum. Research, Society and Development, [S. l.], v. 10, n. 4, p. e55610414568, 2021. DOI: 10.33448/rsd-v10i4.14568. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14568. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences