Alelopatia, toxicidade e perfil fitoquímico de extratos aquosos de Aspidosperma pyrifolium e Combretum leprosum
DOI:
https://doi.org/10.33448/rsd-v10i4.14568Palavras-chave:
Mofumbo; Pereiro; Caatinga; Metabólitos.Resumo
Este estudo caracteriza o efeito alelopático, na germinação de semestes de Allium cepa, e tóxico, sobre a espécie Artemia salina, de extratos aquosos de folhas de Aspidosperma pyrifolium e Combretum leprosum e as composições fitoquímicas constituintes. Para isso, sementes de Allium cepa foram germinadas em sistemas contendo extratos aquosos (200, 400 e 800 mg.L-1) e água destilada, para avaliar aspectos de germinação, fases mitóticas, índice mitótico e valor limite de citotoxicidade. A toxicidade dos extratos aquosos foi avaliada em Artemia salina. Os extratos foram avaliados qualitativa e quantitativamente quando as substâncias presentes para definir o perfil fitoquímico. O extrato aquoso de A. pyrifolium afeta negativamente o processo de germinação no hipocótilo e no crescimento de plântulas a 800 mg.L-1. A CL50 encontrado para o extrato aquoso de A. pyrifolium foi de 4986 mg.L-1. O efeito do extrato de C. leprosum na germinação resultou no aumento da matéria seca da raiz a 400 mg.L-1 e na densidade da matéria seca da raiz a 800 mg.L-1. Além disso, reduz a matéria de plântula a 200 mg.L-1, correspondendo à tendência observada no índice mitótico, em que essa concentração apresentou escore subletal para o valor limite de citotoxicidade. A concentração máxima avaliada não foi suficiente para determinar um CL50 em A. salina. Os perfis fitoquímicos de ambas espécies demonstraram classes de substâncias com potencial aplicação farmacológica. Esta informação é importante porque essas espécies são comumente usadas como alimento para animais de produção e para fins na medicina popular.
Referências
Agra, M. d. F., Baracho, G. S., Nurit, K., Basílio, I. J. L. D., & Coelho, V. P. M. (2007). Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethopharmacol, 111(2), 383-395. https://doi.org/10.1016/j.jep.2006.12.007
Ajasa, A. M. O., Bello, M. O., Ibrahim, A. O., Ogunwande, I. A., & Olawore, N. O. (2004). Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem., 85(1), 67-71. https://doi.org/10.1016/j.foodchem.2003.06.004
Akinboro, A., & Bakare, A. A. (2007). Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. J Ethopharmacol, 112(3), 470-475. https://doi.org/10.1016/j.jep.2007.04.014
Albuquerque, U. P., Medeiros, P. M., Almeida, A. L. S., Monteiro, J. M., Neto, E. M. d. F. L., Melo, J. G., & Santos, J. P. (2007). Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethopharmacol, 114(3), 325-354. https://doi.org/10.1016/j.jep.2007.08.017
Almeida, C. F. C. B. R., Lima e Silva, T. C., Amorim, E. L. C., Maia, M. B. S., & Albuquerque, U. P. (2005). Life strategy and chemical composition as predictors of the selection of medicinal plants from the caatinga (Northeast Brazil). J Arid Environ, 62(1), 127-142. https://doi.org/10.1016/j.jaridenv.2004.09.020
Ammar, R. B., Kilani, S., Bouhlel, I., Ezzi, L., Skandrani, I., Boubaker, J., Sghaier, M. B., Naffeti, A., Mahmoud, A., Chekir-Ghedira, L., & Ghedira, K. (2008). Antiproliferative, Antioxidant, and Antimutagenic Activities of Flavonoid-Enriched Extracts from (Tunisian) Rhamnus alaternus L.: Combination with the Phytochemical Composition. Drug Chem. Toxicol., 31(1), 61-80. https://doi.org/http://10.1080/01480540701688725
Ananthi, R., Chandra, N., Santhiya, S. T., & Ramesh, A. (2010). Genotoxic and antigenotoxic effects of Hemidesmus indicus R. Br. root extract in cultured lymphocytes. J Ethopharmacol, 127(2), 558-560. https://doi.org/10.1016/j.jep.2009.10.034
Antosiewicz, D. (1990). Analysis of the cell cycle in the root meristem of Allium cepa under the influence of ledakrin. Folia Histochemica et Cytobiologica, 28(1-2), 79-95.
Araújo, D. P., Nogueira, P. C. N., Santos, A. D. C., Costa, R. d. O., Lucena, J. D., Jataí Gadelha-Filho, C. V., Lima, F. A. V., Neves, K. R. T., Leal, L. K. A. M., Silveira, E. R., & Viana, G. S. B. (2018). Aspidosperma pyrifolium Mart: neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson's disease model in rats. Journal of Pharmacy and Pharmacology, 70(6), 787-796. https://doi.org/doi:10.1111/jphp.12866
Barbosa, W. L. R., Quignard, E., Tavares, I. C. C., Pinto, L. N., Oliveira, F. Q., & Oliveira, R. M. (2004). Manual para análise fitoquímica e cromatográfica de extratos vegetais. Revista científica da UFPA, 4(5), 1-19.
Bhadoria, P. (2011). Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7. https://doi.org/10.9734/ajea/2011/002
Borges, C. S., Cuchiara, C. C., Silva, S. D. A., & Bobrowski, V. L. (2011). Efeitos citotóxicos e alelopáticos de extratos aquosos de Ricinus communis utilizando diferentes bioindicadores. Embrapa Clima Temperado-Artigo em periódico indexado (ALICE). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/55173/1/artigo1.pdf
Brasil. (2009). Regras para análise de sementes (1 ed.). Ministério da Agricultura, Pecuária e Abastecimento. Retrieved from https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
Carballo, J. L., Hernández-Inda, Z. L., Pérez, P., & García-Grávalos, M. D. (2002). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol, 2(1), 17. https://doi.org/10.1186/1472-6750-2-17
Chukwujekwu, J. C., & Van Staden, J. (2014). Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S. Afr. J. Bot., 92, 147-150. https://doi.org/10.1016/j.sajb.2014.03.001
Esteban, R., Moran, J. F., Becerril, J. M., & García-Plazaola, J. I. (2015). Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exper Bot, 119, 63-75. https://doi.org/10.1016/j.envexpbot.2015.04.009
Evaristo, F. F. V., Albuquerque, M. R. J. R., dos Santos, H. S., Bandeira, P. N., Ávila, F. N., Silva, B. R., Vasconcelos, A. A., Rabelo, É. M., Nascimento-Neto, L. G., Arruda, F. V. S., Vasconcelos, M. A., Carneiro, V. A., Cavada, B. S., & Teixeira, E. H. (2014). Antimicrobial Effect of the Triterpene 3β,6β,16β-Trihydroxylup-20(29)-ene on Planktonic Cells and Biofilms from Gram Positive and Gram Negative Bacteria. BioMed Res. Int, 2014, 1-7, Article 729358. https://doi.org/10.1155/2014/729358
Evaristo, F. F. V., Vasconcelos, M. A., Arruda, F. V. S., Pereira, A. L., Andrade, A. L., Alencar, D. B., Nascimento, M. F., Sampaio, A. H., Saker-Sampaio, S., & Bandeira, P. N. (2017). Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β, 6β, 16β-trihydroxylup-20 (29)-ene from Combretum leprosum. Med. Chem. Res., 26(12), 3296-3306. https://doi.org/10.1007/s00044-017-2022-7
Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R., & Hufford, C. D. (1993). Triterpenes and flavonoids from Combretum leprosum. Phytochemistry, 32(2), 411-415. https://doi.org/10.1016/S0031-9422(00)95005-2
Facundo, V. A., Rios, K. A., Medeiros, C. M., Militão, J. S. L. T., Miranda, A. L. P., Epifanio, R. d. A., Carvalho, M. P., Andrade, A. T., Pinto, A. C., & Rezende, C. M. (2005). Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J Brazil Chem Soc, 16(6B), 1309-1312. https://doi.org/10.1590/S0103-50532005000800002
Ferreira, A. G., & Aquila, M. E. A. (2000). Alelopatia: uma área emergente da ecofisiologia. Rev Bras Fisiol Veg, 12(1), 175-204. Retrieved from https://www.uv.mx/personal/tcarmona/files/2010/08/Gui-y-Alvez-19991.pdf
FISKESJÖ, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x
Francis, F. J. (1982). Analysis of anthocyanins. In Anthocyanins as food colors (pp. 181-207). Academic Press, New York, NY.
Giri, A., Khynriam, D., & Prasad, S. B. (1998). Vitamin C mediated protection on cisplatin induced mutagenicity in mice. Mutat Res-Fund Mol M, 421(2), 139-148. https://doi.org/10.1016/s0027-5107(98)00158-4
Guarrera, M., Turbino, L., & Rebora, A. (2001). The anti‐inflammatory activity of azulene. J Eur Acad Dermatol, 15(5), 486-487. https://doi.org/10.1046/j.1468-3083.2001.00340.x
Guerra, M., & Souza, M. J. (2002). Como observar cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. Ribeirão Preto, São Paulo: FUNPEC. Retrieved from http://www.ensp.fiocruz.br/portal-ensp/_uploads/documentos-pessoais/documento-pessoal_52172.pdf
Haider, S., Naithani, V., Barthwal, J., & Kakkar, P. (2004). Heavy Metal Content in Some Therapeutically Important Medicinal Plants [journal article]. B Environ Contam Tox, 72(1), 119-127. https://doi.org/10.1007/s00128-003-0249-0
Horinouchi, C. D. S., Mendes, D. A. G. B., Silva Soley, B., Pietrovski, E. F., Facundo, V. A., Santos, A. R. S., Cabrini, D. A., & Otuki, M. F. (2013). Combretum leprosum Mart. (Combretaceae): potential as an antiproliferative and anti-inflammatory agent. J Ethnopharmacol, 145(1), 311-319. https://doi.org/10.1016/j.jep.2012.10.064
Ivanova, D., Gerova, D., Chervenkov, T., & Yankova, T. (2005). Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol, 96(1-2), 145-150. https://doi.org/10.1016/j.jep.2004.08.033
Kaur, P., Kaur, S., Kumar, N., Singh, B., & Kumar, S. (2009). Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L. Toxicol in vitro, 23(4), 680-686. https://doi.org/10.1016/j.tiv.2009.01.019
Kaur, S. J., Grover, I. S., & Kumar, S. (2000). Modulatory effects of a tannin fraction isolated from Terminalia arjuna on the genotoxicity of mutagens in Salmonella typhimurium. Food Chem Toxicol, 38(12), 1113-1119. https://doi.org/10.1016/S0278-6915(00)00104-6
Kostova, I. (2006). Synthetic and natural coumarins as antioxidants. Mini-Rev Med Chem, 6(4), 365-374. https://doi.org/10.2174/138955706776361457
Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agr Food Chem, 45(4), 1390-1393. https://doi.org/10.1021/jf960282f
Lee, S.-J., Sung, J.-H., Lee, S.-J., Moon, C.-K., & Lee, B.-H. (1999). Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer lett, 144(1), 39-43. https://doi.org/10.1016/s0304-3835(99)00188-3
Leme, D. M., Angelis, D. F., & Marin-Morales, M. A. (2008). Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquat Toxicol, 88(4), 214-219. https://doi.org/10.1016/j.aquatox.2008.04.012
Lima, M. C. J. S., & Soto-Blanco, B. (2010). Poisoning in goats by Aspidosperma pyrifolium Mart.: Biological and cytotoxic effects. Toxicon, 55(2-3), 320-324. https://doi.org/10.1016/j.toxicon.2009.08.004
Lira, S. R. d. S., Almeida, R. N., Castro Almeida, F. R., Sousa Oliveira, F., & Duarte, J. C. (2002). Preliminary studies on the analgesic properties of the ethanol extract of Combretum leprosum. Pharm Biol, 40(3), 213-215. https://doi.org/10.1076/phbi.40.3.213.5837
Longhi-Balbinot, D. T., Lanznaster, D., Baggio, C. H., Silva, M. D., Cabrera, C. H., Facundo, V. A., & Santos, A. R. S. (2012). Anti-inflammatory effect of triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene obtained from Combretum leprosum Mart & Eich in mice. J Ethnopharmacol, 142(1), 59-64. https://doi.org/10.1016/j.jep.2012.04.013
Lopes, L. S., Marques, R. B., Pereira, S. S., Ayres, M. C. C., Chaves, M. H., Cavalheiro, A. J., Vieira Júnior, G. M., & Almeida, F. R. C. (2010). Antinociceptive effect on mice of the hydroalcoholic fraction and (-) epicatechin obtained from Combretum leprosum Mart & Eich. Brazilian Journal of Medical and Biological Research, 43(12), 1184-1192. https://doi.org/10.1590/S0100-879X2010007500121
Luz, A. C., Pretti, I. R., Dutra, J. C. V., & Batitucci, M. C. P. (2012). Evaluation of the cytotoxic and genotoxic potential of Plantago major L. in test systems in vivo. Rev Bras Pl Med, 14(4), 635-642. https://doi.org/10.1590/S1516-05722012000400010
Maciel, M. A. M., Pinto, A. C., Veiga Jr, V. F., Grynberg, N. F., & Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidisciplinares. Quim nova, 25(3), 429-438. https://doi.org/10.1590/S0100-40422002000300016
Matos, F. J. A. (2009). Introdução à fitoquímica experimental (3 ed.). Edições UFC.
Matsumoto, R. S., Ribeiro, J. P. N., Takao, L. K., & Lima, M. I. S. (2010). Allelopathic potential of leaf extract of Annona glabra L.(Annonaceae). Acta Bot Bras, 24(3), 631-635. https://doi.org/10.1590/S0102-33062010000300005
Medeiros, R. M. T., Neto, S. A. G., Riet-Correa, F., Schild, A. L., & Sousa, N. L. (2004). Mortalidade embrionária e abortos em caprinos causados por Aspidosperma pyrifolium. Pesqui Vet Bras, 24(sSupl).
Melo, J. G., Rodrigues, M. D., Nascimento, S. C., Amorim, E. L. C., & Albuquerque, U. P. (2017). Cytotoxicity of plants from the Brazilian semi-arid region: A comparison of different selection approaches. South African Journal of Botany, 113, 47-53. https://doi.org/10.1016/j.sajb.2017.07.013
Melo, J. I. M., & Andrade, W. M. (2007). Boraginaceae s.l. A. Juss. em uma área de Caatinga da ESEC Raso da Catarina, BA, Brasil. Acta Bot Bras, 21, 369-378. https://doi.org/10.1590/S0102-33062007000200011
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med, 45(05), 31-34. https://doi.org/10.1055/s-2007-971236
Mitaine-Offer, A.-C., Sauvain, M., Valentin, A., Callapa, J., Mallié, M., & Zèches-Hanrot, M. (2002). Antiplasmodial activity of Aspidosperma indole alkaloids. Phytomedicine, 9(2), 142-145. https://doi.org/10.1078/0944-7113-00094
Morgan, D. O. (2006). The Cell Cycle: Principles of Control New Science Press. Ltd.
Mors, W. B., Nascimento, M. C., Pereira, B. M. R., & Pereira, N. A. (2000). Plant natural products active against snake bite—the molecular approach. Phytochemistry, 55(6), 627-642. https://doi.org/10.1016/S0031-9422(00)00229-6
Muñoz, V., Sauvain, M., Bourdy, G., Arrazola, S., Callapa, J., Ruiz, G., Choque, J., & Deharo, E. (2000). A search for natural bioactive compounds in Bolivia through a multidisciplinary approach part III. Evaluation of the antimalarial activity of plants used by Altenos Indians. J Ethnopharmacol, 71(1-2), 123-131. https://doi.org/10.1016/S0378-8741(99)00191-9
Nogueira, P. C. N., Araújo, R. M., Viana, G. S. B., Araújo, D. P., Braz Filho, R., & Silveira, E. R. (2014). Plumeran alkaloids and glycosides from the seeds of Aspidosperma pyrifolium mart. J Brazil Chem Soc, 25(11), 2108-2120. https://doi.org/10.5935/0103-5053.20140204
Noldin, V. F., Filho, V. C., Monache, F. D., Benassi, J. C., Christmann, I. L., Pedrosa, R. C., & Yunes, R. A. (2003). Composição química e atividades biológicas das folhas de Cynara scolymus L. (alcachofra) cultivada no Brasil. Quim nova, 26(3), 331-334. https://doi.org/10.1590/S0100-40422003000300008
Nunes, A. R., Rodrigues, A. L. M., de Queiróz, D. B., Vieira, I. G. P., Neto, J. F. C., Junior, J. T. C., Tintino, S. R., de Morais, S. M., & Coutinho, H. D. M. (2018). Photoprotective potential of medicinal plants from Cerrado biome (Brazil) in relation to phenolic content and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology, 189, 119-123. https://doi.org/10.1016/j.jphotobiol.2018.10.013
Nunes, P. H. M., Cavalcanti, P. M. S., Galvao, S. M. P., & Martins, M. C. C. (2009). Antiulcerogenic activity of Combretum leprosum. Pharmazie, 64(1), 58-62. https://doi.org/10.1691/ph.2008.8652
Odin, A. P. (1997). Vitamins as antimutagens: advantages and some possible mechanisms of antimutagenic action. Mutat Res-Rev Mutat, 386(1), 39-67. https://doi.org/10.1016/S1383-5742(96)00044-0
Panda, B. B., & Sahu, U. K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfothion. Cytobios, 42, 147-115.
Parsons, A. F., & Williams, D. A. J. (2000). Radical cyclisation reactions leading to polycyclics related to the Amaryllidaceae and Erythrina alkaloids. Tetrahedron, 56(37), 7217-7228. https://doi.org/10.1016/S0040-4020(00)00646-3
Paulino, R. d. C., Henriques, G. P., Moura, O. N. S., Coelho, M. d. F. B., & Azevedo, R. A. B. (2012). Medicinal plants at the Sítio do Gois, Apodi, Rio Grande do Norte State, Brazil. Rev Bras Farmacogn, 22(1), 29-39. https://doi.org/10.1590/S0102-695X2011005000203
Pereira, W. A., Sávio, F. L., Borém, A., & Dias, D. C. F. S. (2009). Influence of the seed arrangement, number and size of soybean seed on seeling length test. Rev Bras Sementes, 31(1), 113-121. https://doi.org/10.1590/S0101-31222009000100013
Perez-Carreon, J. I., Cruz-Jiménez, G., Licea-Vega, J. A., Popoca, E. A., Fazenda, S. F., & Villa-Treviño, S. (2002). Genotoxic and anti-genotoxic properties of Calendula officinalis extracts in rat liver cell cultures treated with diethylnitrosamine. Toxicol in vitro, 16(3), 253-258. https://doi.org/10.1016/S0887-2333(02)00005-X
Pietta, P.-G. (2000). Flavonoids as antioxidants. J Nat Prod, 63(7), 1035-1042. https://doi.org/10.1021/np9904509
Rodriguez, A. G., Teixeira, O. M., Salles, F. G., Vital, J. P., & Peixoto, D. S. (2010). Bioensaio dom Artemia Salina para Detecção de Toxinas em Alimentos Vegetais. Revista EVS - Revista de Ciências Ambientais e Saúde, 36(4), 14. https://doi.org/10.18224/est.v36i4.1130
Sarkar, A., Basak, R., Bishayee, A., Basak, J., & Chatterjee, M. (1997). β-Carotene inhibits rat liver chromosomal aberrations and DNA chain break after a single injection of diethylnitrosamine. Brit J Cancer, 76(7), 855-861. https://doi.org/10.1038/bjc.1997.475
Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Crit Rev Food Sci, 32(1), 67-103. https://doi.org/10.1080/10408399209527581
Sharma, C. (1983). Plant meristems as monitors of genetic toxicity of environmental chemicals. Current science, 1000-1002. Retrieved from https://www.jstor.org/stable/24086355?seq=1
Silva, D. S. B. S., Barboza, B., Garcia, A. C. F. S., de Oliveira, B., Estevam, C. S., Neto, V. A., Santos, A. L. L. M., Dias, A. S., Scher, R., & Pantaleao, S. M. (2013). Investigation of protective effects of Erythrina velutina extract against MMS induced damages in the root meristem cells of Allium cepa. Rev Bras Farmacogn, 23(2), 273-278. https://doi.org/10.1590/S0102-695X2013005000006
Solis, P. N., Wright, C. W., Anderson, M. M., Gupta, M. P., & Phillipson, J. D. (1993). A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med, 59(03), 250-252. https://doi.org/10.1055/s-2006-959661
Teles, C. B., Moreira, L. S., Silva, A. d. A., Facundo, V. A., Zuliani, J. P., Stábeli, R. G., & Silva-Jardim, I. (2011). Activity of the Lupane isolated from Combretum leprosum against Leishmania amazonensis promastigotes. J Brazil Chem Soc, 22(5), 936-942. https://doi.org/10.1590/S0103-50532011000500017
Torres, A. L., Boiça Júnior, A. L., Medeiros, C. A. M., & Barros, R. (2006). Efeito de extratos aquosos de Azadirachta indica, Melia azedarach e Aspidosperma pyrifolium no desenvolvimento e oviposição de Plutella xylostella. Bragantia, 447-457. https://doi.org/10.1590/S0006-87052006000300011
Trindade, R. C. P., Silva, P. P., Araújo-Júnior, J. X., Lima, I. S., Paula, J. E., & Sant'Ana, A. E. G. (2008). Mortality of Plutella xylostella larvae treated with Aspidosperma pyrifolium ethanol extracts. Pesq Agropec Bras, 43(12), 1813-1816. https://doi.org/10.1590/S0100-204X2008001200024
Varnero M, M. T., Rojas A, C., & Orellana R, R. (2007). Índices de fitotoxicidad en residuos orgánicos durante el compostaje. Rev Cienc Suelo Nutr, 7, 28-37. https://doi.org/10.4067/S0718-27912007000100003
Yıldız, M., Ciğerci, İ. H., Konuk, M., Fidan, A. F., & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75(7), 934-938. https://doi.org/10.1016/j.chemosphere.2009.01.023
Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotox Environ Safe, 76, 182-186. https://doi.org/10.1016/j.ecoenv.2011.09.019
Zampini, I. C., Villarini, M., Moretti, M., Dominici, L., & Isla, M. I. (2008). Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav. J Ethnopharmacol, 115(2), 330-335. https://doi.org/10.1016/j.jep.2007.10.007
Zhai, S., Dai, R., Friedman, F. K., & Vestal, R. E. (1998). Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab Dispos, 26(10), 989-992. https://dmd.aspetjournals.org/content/26/10/989
Zucconi, F. (1981). Evaluating toxicity of immature compost. Biocycle, 22(2), 54-57.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 José Carlos da Silveira Pereira; Karina Maia Paiva; Naama Jessica de Assis Melo; Tallyson Nogueira Barbosa; Patrícia Lígia Dantas de Morais ; Juliana Rocha Vaez; Salvador Barros Torres; Marcos Antonio Nobrega de Sousa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.