Analysis of Decision Tree Induction Algorithms
DOI:
https://doi.org/10.33448/rsd-v8i11.1473Keywords:
Data Structure; Artificial intelligence; Computational decision; C4.5; CART.Abstract
Decision trees are data structures or computational methods that enable nonparametric supervised machine learning and are used in classification and regression tasks. The aim of this paper is to present a comparison between the decision tree induction algorithms C4.5 and CART. A quantitative study is performed in which the two methods are compared by analyzing the following aspects: operation and complexity. The experiments presented practically equal hit percentages in the execution time for tree induction, however, the CART algorithm was approximately 46.24% slower than C4.5 and was considered to be more effective.
References
Barbosa, J.M., Carneiro,T.G.S. & Tavares, A.L. (2012). Métodos de Classificação por Árvores de Decisão. Disciplina de Projeto e Análise de Algoritmos do PPGCC - Programa de Pós-Graduação em Ciência da Computação do Departamento de Computação (DECOM) da Universidade Federal de Ouro Preto (UFOP). Disponível em: <http://www.decom.ufop.br/menotti/paa111/files/PCC104-111-ars-11.1-JulianaMoreiraBarbosa.pdf>. Acesso em: 03 Ago. 2019.
Bittencourt, H. R. & Clarke, R. T. (2003). Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: Anais do International Geoscience and Remote Sensing Symposium. pp. 3751-3753. Disponível em: Acesso em: 02 ago. 2019.
Carvalho, D.R. (2005). Árvore de decisão / algoritmo genético para tartar o problema de pequenos disjuntos em classificação de dados. Tese (Doutorado) no Programa de Pós-Graduação em computação de alto desempenho / sistemas computacionais do Programa de Engenharia Civil da Universidade Federal do Rio de Janeiro. Disponível em: http://www.ipardes.gov.br/biblioteca/docs/tese_deborah_carvalho.pdf. Acesso: 6 ago. 2019.
Cormen, T. H. (2009). Introduction to algorithms. MIT press, USA.
Garcia, S. C. (2003). O uso de árvores de decisão na descoberta de conhecimento na área da saúde. Tese (Doutorado) na Universidade Federal doRio Grande do Sul. Disponível em: <http://hdl.handle.net/10183/4703>. Acesso em: 03 ago. 2019.
Giasson, E, Hartemink, A.E, Tornquist, C.G., Teske, R, & Bagatini, T. (2013). Avaliação de cinco algoritmos de árvores de decisão e três tipos de modelos digitais de elevação para mapeamento digital de solos a nível semidetalhado na Bacia do Lageado Grande, RS, Brasil. Ciência Rural, 43(11): 1967-1973. https://dx.doi.org/10.1590/S0103-84782013001100008
Han, J. & Kamber, M. (2002). Data Mining: Concepts and Techniques. 3.ed. Morgan Kaufmann/Elsevier, Waltham, MA, USA.
Nascimento, P. T. S. & Façanha, S. L. O. (2008). Árvore de decisão incompleta: reduzindo a complexidade para acelerar a decisão. In: Anais do Encontro da Associação Nacional de Pós-Graduação e Pesquisa em Administração, 32(1). Disponível em: <http://www.anpad.org.br/admin/pdf/ESO-A1183.pdf>. Acesso em: 3 ago. 2019.
Nascimento Jr., L.A.F. (2017). Aplicando método do gradiente ótimo na otimização do cálculo do grau de cobertura das regras em árvores de decisão Fuzzy. Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, 9(3):31-43, out. 2017.
Pereira, A.S., Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa cientifica. Santa Maria/RS, Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 3 ago. 2019.
Ragsdale, C. T. (2010). Spreadsheet modeling and decision analysis. 6.ed. Cengage Learning, USA.
Ruggieri, S. (2002). Efficient C4.5. Knowledge and Data Engineering, IEEE Transactions, 14(2):438-444. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991727&tag=1. Acess on: Aug., 3rd, 2019.
Wu, X. & Kumar, V. (2009). The top ten algorithms in data mining. Chapman & Hall/CRC, Boca Ratton, USA.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.