Análisis de algoritmos de inducción del árbol de decisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v8i11.1473

Palabras clave:

Estructura de datos; Inteligencia artificial; Decisión computacional; C4.5; CART.

Resumen

Los árboles de decisión son estructuras de datos o métodos computacionales que permiten el aprendizaje automático supervisado no paramétrico y se utilizan en tareas de clasificación y regresión. El objetivo de este trabajo es presentar una comparación entre los algoritmos de inducción del árbol de decisión C4.5 y CART. Se realiza un estudio cuantitativo en el que se comparan los dos métodos mediante el análisis de los siguientes aspectos: operación y complejidad. Los experimentos presentaron porcentajes de aciertos prácticamente iguales en el tiempo de ejecución para la inducción del árbol; sin embargo, el algoritmo CART fue aproximadamente un 46,24% más lento que C4.5 y se consideró más efectivo.

Citas

Barbosa, J.M., Carneiro,T.G.S. & Tavares, A.L. (2012). Métodos de Classificação por Árvores de Decisão. Disciplina de Projeto e Análise de Algoritmos do PPGCC - Programa de Pós-Graduação em Ciência da Computação do Departamento de Computação (DECOM) da Universidade Federal de Ouro Preto (UFOP). Disponível em: <http://www.decom.ufop.br/menotti/paa111/files/PCC104-111-ars-11.1-JulianaMoreiraBarbosa.pdf>. Acesso em: 03 Ago. 2019.

Bittencourt, H. R. & Clarke, R. T. (2003). Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: Anais do International Geoscience and Remote Sensing Symposium. pp. 3751-3753. Disponível em: Acesso em: 02 ago. 2019.

Carvalho, D.R. (2005). Árvore de decisão / algoritmo genético para tartar o problema de pequenos disjuntos em classificação de dados. Tese (Doutorado) no Programa de Pós-Graduação em computação de alto desempenho / sistemas computacionais do Programa de Engenharia Civil da Universidade Federal do Rio de Janeiro. Disponível em: http://www.ipardes.gov.br/biblioteca/docs/tese_deborah_carvalho.pdf. Acesso: 6 ago. 2019.

Cormen, T. H. (2009). Introduction to algorithms. MIT press, USA.

Garcia, S. C. (2003). O uso de árvores de decisão na descoberta de conhecimento na área da saúde. Tese (Doutorado) na Universidade Federal doRio Grande do Sul. Disponível em: <http://hdl.handle.net/10183/4703>. Acesso em: 03 ago. 2019.

Giasson, E, Hartemink, A.E, Tornquist, C.G., Teske, R, & Bagatini, T. (2013). Avaliação de cinco algoritmos de árvores de decisão e três tipos de modelos digitais de elevação para mapeamento digital de solos a nível semidetalhado na Bacia do Lageado Grande, RS, Brasil. Ciência Rural, 43(11): 1967-1973. https://dx.doi.org/10.1590/S0103-84782013001100008

Han, J. & Kamber, M. (2002). Data Mining: Concepts and Techniques. 3.ed. Morgan Kaufmann/Elsevier, Waltham, MA, USA.

Nascimento, P. T. S. & Façanha, S. L. O. (2008). Árvore de decisão incompleta: reduzindo a complexidade para acelerar a decisão. In: Anais do Encontro da Associação Nacional de Pós-Graduação e Pesquisa em Administração, 32(1). Disponível em: <http://www.anpad.org.br/admin/pdf/ESO-A1183.pdf>. Acesso em: 3 ago. 2019.

Nascimento Jr., L.A.F. (2017). Aplicando método do gradiente ótimo na otimização do cálculo do grau de cobertura das regras em árvores de decisão Fuzzy. Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, 9(3):31-43, out. 2017.

Pereira, A.S., Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa cientifica. Santa Maria/RS, Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 3 ago. 2019.

Ragsdale, C. T. (2010). Spreadsheet modeling and decision analysis. 6.ed. Cengage Learning, USA.

Ruggieri, S. (2002). Efficient C4.5. Knowledge and Data Engineering, IEEE Transactions, 14(2):438-444. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991727&tag=1. Acess on: Aug., 3rd, 2019.

Wu, X. & Kumar, V. (2009). The top ten algorithms in data mining. Chapman & Hall/CRC, Boca Ratton, USA.

Publicado

24/08/2019

Cómo citar

OKADA, H. K. R.; NEVES, A. R. N. das; SHITSUKA, R. Análisis de algoritmos de inducción del árbol de decisión. Research, Society and Development, [S. l.], v. 8, n. 11, p. e298111473, 2019. DOI: 10.33448/rsd-v8i11.1473. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/1473. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Exactas y de la Tierra