Análisis de algoritmos de inducción del árbol de decisión
DOI:
https://doi.org/10.33448/rsd-v8i11.1473Palabras clave:
Estructura de datos; Inteligencia artificial; Decisión computacional; C4.5; CART.Resumen
Los árboles de decisión son estructuras de datos o métodos computacionales que permiten el aprendizaje automático supervisado no paramétrico y se utilizan en tareas de clasificación y regresión. El objetivo de este trabajo es presentar una comparación entre los algoritmos de inducción del árbol de decisión C4.5 y CART. Se realiza un estudio cuantitativo en el que se comparan los dos métodos mediante el análisis de los siguientes aspectos: operación y complejidad. Los experimentos presentaron porcentajes de aciertos prácticamente iguales en el tiempo de ejecución para la inducción del árbol; sin embargo, el algoritmo CART fue aproximadamente un 46,24% más lento que C4.5 y se consideró más efectivo.
Citas
Barbosa, J.M., Carneiro,T.G.S. & Tavares, A.L. (2012). Métodos de Classificação por Árvores de Decisão. Disciplina de Projeto e Análise de Algoritmos do PPGCC - Programa de Pós-Graduação em Ciência da Computação do Departamento de Computação (DECOM) da Universidade Federal de Ouro Preto (UFOP). Disponível em: <http://www.decom.ufop.br/menotti/paa111/files/PCC104-111-ars-11.1-JulianaMoreiraBarbosa.pdf>. Acesso em: 03 Ago. 2019.
Bittencourt, H. R. & Clarke, R. T. (2003). Use of classification and regression trees (CART) to classify remotely-sensed digital images. In: Anais do International Geoscience and Remote Sensing Symposium. pp. 3751-3753. Disponível em: Acesso em: 02 ago. 2019.
Carvalho, D.R. (2005). Árvore de decisão / algoritmo genético para tartar o problema de pequenos disjuntos em classificação de dados. Tese (Doutorado) no Programa de Pós-Graduação em computação de alto desempenho / sistemas computacionais do Programa de Engenharia Civil da Universidade Federal do Rio de Janeiro. Disponível em: http://www.ipardes.gov.br/biblioteca/docs/tese_deborah_carvalho.pdf. Acesso: 6 ago. 2019.
Cormen, T. H. (2009). Introduction to algorithms. MIT press, USA.
Garcia, S. C. (2003). O uso de árvores de decisão na descoberta de conhecimento na área da saúde. Tese (Doutorado) na Universidade Federal doRio Grande do Sul. Disponível em: <http://hdl.handle.net/10183/4703>. Acesso em: 03 ago. 2019.
Giasson, E, Hartemink, A.E, Tornquist, C.G., Teske, R, & Bagatini, T. (2013). Avaliação de cinco algoritmos de árvores de decisão e três tipos de modelos digitais de elevação para mapeamento digital de solos a nível semidetalhado na Bacia do Lageado Grande, RS, Brasil. Ciência Rural, 43(11): 1967-1973. https://dx.doi.org/10.1590/S0103-84782013001100008
Han, J. & Kamber, M. (2002). Data Mining: Concepts and Techniques. 3.ed. Morgan Kaufmann/Elsevier, Waltham, MA, USA.
Nascimento, P. T. S. & Façanha, S. L. O. (2008). Árvore de decisão incompleta: reduzindo a complexidade para acelerar a decisão. In: Anais do Encontro da Associação Nacional de Pós-Graduação e Pesquisa em Administração, 32(1). Disponível em: <http://www.anpad.org.br/admin/pdf/ESO-A1183.pdf>. Acesso em: 3 ago. 2019.
Nascimento Jr., L.A.F. (2017). Aplicando método do gradiente ótimo na otimização do cálculo do grau de cobertura das regras em árvores de decisão Fuzzy. Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, 9(3):31-43, out. 2017.
Pereira, A.S., Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa cientifica. Santa Maria/RS, Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 3 ago. 2019.
Ragsdale, C. T. (2010). Spreadsheet modeling and decision analysis. 6.ed. Cengage Learning, USA.
Ruggieri, S. (2002). Efficient C4.5. Knowledge and Data Engineering, IEEE Transactions, 14(2):438-444. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991727&tag=1. Acess on: Aug., 3rd, 2019.
Wu, X. & Kumar, V. (2009). The top ten algorithms in data mining. Chapman & Hall/CRC, Boca Ratton, USA.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.