Pulsed-wave doppler ultrasound in canine reproductive system – Part 1: technical aspects

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15348

Keywords:

Spectral Doppler; Doppler effect; Resistance index; Dog; Ultrasound.

Abstract

The purpose of this article is to review the literature on the essential technical aspects of implementing the pulsed Doppler, as part of the teachings to their use in the diagnosis of changes in the canine reproductive system. A narrative review was carried out, using scientific articles, monographs, theses and dissertations published and available in online databases: Periodical Capes (Coordination for the Improvement of Higher Education Personnel), SciELO (Scientific Electronic Library Online) and Google Scholar, in addition to specific books on the topic. Two-dimensional ultrasound has been widely used in medicine since 1942, leading to advancements in disease identification and subsequent prognosis. In terms of vascular assessment, Doppler ultrasound is used to evaluate the blood flow inside the vessel, its direction, and hemodynamic pattern. Among all types of Doppler ultrasound, the Color Doppler (CD), Power Doppler (PD), and the Pulsed-wave Doppler (PW) are commonly used in the identification of abnormalities through ultrasound flow imaging and the analysis of hemodynamic indices: peak systolic velocity (PSV), end diastolic velocity (EDV), resistance index (RI), and pulsatility index (PI). To accurately estimate these hemodynamic indices, however, it is essential to know the technical adjustments and parameters such as the pulse repetition frequency (PRF), size of the sample volume (Gate), angle of insonation, gain, baseline, and wall filter, which need to be corrected to avoid technician derive artifacts such as aliasing, signal absence, and mirror imaging. In medicine, the use of Doppler Mode in reproductive functions is already well established, but its use in veterinary medicine is still a subject of recent studies.

Author Biography

Andréia Vitor Couto do Amaral, Federal University of Jataí

Unidade Acadêmica Especial de Ciências Agrárias

References

Benacerraf, B. R., Abuhamad, A. Z., Bromley, B., Goldstein SR., Groszmann, Y., Shipp, T. D. & Timor-Tritsch, I.E. (2015). Consider ultrasound first for imaging the female pelvis. Am J Obstet Gynecol, 212(4), 450-455. Doi: 10.1016/j.ajog.2015.02.015.

Carvalho, C. F. & Addad, C. A. (2009). Modos de Processamento da Imagem Doppler. In C. F. Carvalho (Ed), Ultrassonografia Doppler em Pequenos Animais (1st ed., pp. 7-15). Roca.

Carvalho, C. F., Chammas, M. C. & Cerri, G. G. (2008). Princípios físicos do Doppler em ultra-sonografia. Ciência Rural, 38, 872–879. Doi:10.1590/s0103-84782008000300047.

Castelló, C. M., Bragato, N., Martins, I., Santos, T. V. & Borges, N. C. (2015). Ultrassonografia doppler colorido e doppler espectral para o estudo de pequenos fluxos. Enciclopédia Biosfera, 11(22), 2691-2713. Doi: http://dx.doi.org/10.18677/Enciclopedia_Biosfera_2015_235.

Genc, A., Ryk, M., Suwała, M., Żurakowska, T, & Kosiak, W. (2016). Ultrasound imaging in the general practitioner’s office – a literature review. Journal of Ultrasonography, 16(64), 78–86. Doi: 10.15557/JoU.2016.0008.

Gupta, P., Lyons, S. & Hedgire, S. (2019). Ultrasound imaging of the arterial system. Cardiovasc Diagn Ther, 9(Suppl 1), S2-S13. Doi: http://dx.doi.org/10.21037/cdt.2019.02.05.

Holen, J. (2014). Introduction to Vascular Ultrasonography. Radiology, 154. Doi:10.1148/radiology.154.2.442.

Jenderka, K. V. & Delorme, S. (2015). Verfahren der Dopplersonographie. Radiologe, 55, 593–610. Doi:10.1007/s00117-015-2869-x.

Kaunitz, J. D. (2016). The Doppler Effect: A Century from Red Shift to Red Spot. Dig Dis Sci, 61(2):340–341. Doi: 10.1007/s10620-015-3998-9.

Lee, W. (2014). General principles of carotid Doppler ultrasonography. Ultrasonography, 33(1), 11-17. Doi: 10.14366/usg.13018.

Matoon, J. S. & Nyland, T. G. (2015). Ovaries and uterus. In J. S. Matoon. & T. G. Nyland (Eds.), Small animal diagnostic ultrasound (3rd ed., pp. 634-654). WB Saunders.

Negreiros, M. P. M. de., Seugling, G. H. de F., Almeida, A. B. M. de, Hidalgo, M. M. T., Martins, M. I. M., Blaschi, W. & Barreiros, T. R. R. (2020). Influence of nutritional and ovarian parameters on pregnancy rates of Nelore cows artificially inseminated at fixed time. Research, Society and Development, 9(9), e907998091. Doi: https://doi.org/10.33448/rsd-v9i9.8091.

Oglat, A. A., Matjafri, M. Z., Suardi, N., Oqlat, M. A., Abdelrahman, M. A. & Oqlat, A. A. (2018). A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J Med Ultrasound, 26(1), 3-13. Doi: 10.4103/JMU.JMU_11_17.

Oliveira, M. F. de., Vilar, A. M. A., & Silvino, Z. R. (2020). Applicability of portable ultrasound for central venous access in critical neonates: scoping review. Research, Society and Development, 9(8), e744986495. Doi: https://doi.org/10.33448/rsd-v9i8.6495.

Paolinelli, P. (2013). Principios físicos e indicaciones clínicas del ultrasonido doppler. Rev Med Clin Condes, 24, 139-148. Doi: 10.1016/S0716-8640(13)70139-1.

Pellerito, J. S. & Polak, J. F. (2012). Basic Concepts of Doppler Frequency Spectrum Analisis and Ultrasound Blood Flow Imaging. In P. Pellerito (Ed.), Introduction to vascular ultrassonography (6th ed., pp. 52-73). Elsevier.

Pinto, R. B. B., Ribeiro, K. C., da Silva, M. F., Regalin, D., Meirelles-Bartoli, R. B. & Amaral, A. V. C. do. (2021). Main anesthetic blocks for eye surgery in dogs and cats. Research, Society and Development, 10(3), 1-8. Doi: https://doi.org/10.33448/rsd-v10i3.13719.

Revzin, M. V., Imanzadeh, A., Menias, C., Pourjabbar, S., Mustafa, A., Nezami, N., Spektor, M. & Pellerito, J. S. (2019). Optimizing Image Quality When Evaluating Blood Flow at Doppler US: A Tutorial. RadioGraphics, 39, 1501-1523. Doi: https://doi.org/10.1148/rg.2019180055.

Romualdo, A. P. (2014). Ajustes de aparelho. In A. P. Romualdo (Ed.), Doppler sem Segredos (1st ed., pp. 17-28). Elsevier.

Roy, H. S.; Zuo, G.; Luo, Z.; Wu, H.; Krupka, T. M.; Ran, H.; Li, P.; Sun, Y.; Wang, Z.; Zhengy, Y. (2012). Direct and Doppler angle-independent measurement of blood flow velocity in small-diameter vessels ultrasound microbubbles. Clinical Imaging, 36(5), 577-583.

Schuster, P. M. (2007). Revolucionário e ainda assim desconhecido! Rev. Bras. Ensino Fís., 29(3), 465-470.

Seoane, M. P. R., Garcia, D. A. A. & Froes, T. R. (2016). A história da ultrassonografia veterinária em pequenos animais. Archives of Veterinary Science, 16(1), 54-61. Doi: http://dx.doi.org/10.5380/avs.v16i1.17646.

Downloads

Published

15/05/2021

How to Cite

CARVALHO, C. F. de .; MAGALHÃES, J. R.; MARTINS, A. M.; GUIMARÃES, K. C. das D. S.; MORAES, R. S. de; SOUSA, D. B. de .; AMARAL, A. V. C. do. Pulsed-wave doppler ultrasound in canine reproductive system – Part 1: technical aspects. Research, Society and Development, [S. l.], v. 10, n. 5, p. e52510515348, 2021. DOI: 10.33448/rsd-v10i5.15348. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15348. Acesso em: 26 nov. 2024.

Issue

Section

Review Article