When age matters: boys with Duchenne muscular dystrophy have growth delay and a fat mass accumulation, as they get older

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15922

Keywords:

Anthropometry; Body composition; Muscular dystrophies; Neuromuscular diseases.

Abstract

Anthropometry and body composition evaluation in boys with Duchenne muscular dystrophy (DMD) are challenging, but crucial methods to evaluate the nutritional status, and better anthropometric reference values and body composition predictive equations are needed for this population. Based on these aspects, this study aimed to investigate the hypothesis that changes in anthropometric parameters and body composition of boys with DMD occur according to age. A cross-sectional study with 49 individuals diagnosed with DMD at the neurological outpatient facility at the Onofre Lopes University Hospital in Natal, Brazil, was performed between September 2016 and March 2019. These individuals underwent anthropometric and body composition evaluation. According to age, the participants were divided into four groups:  G1 (2.6 - 8.2y), G2 (8.5 - 10.8y), G3 (11.0 - 14.0y), and G4 (15.9 - 23.0y). The parameters weight-for-age (W/A) (p=0.025), tricipital skinfold (TSF) (p=0.027), adductor pollicis muscle (p=0.041), and corrected arm muscle area (cAMA) (p=0.005) were different among the groups. Regarding anthropometric parameters, was prevalence in the categories of appropriate W/A and a height-for-age (H/A), and eutrophy for body mass index-for-age (BMI/A). For the TSF, there was a higher frequency of severe malnutrition or obesity. The cAMA indicated severe malnutrition in most individuals. As for %FM, high adiposity was more frequent, increasing over age groups (G1 to G4). The boys with DMD presented different patterns of anthropometric and body composition parameters. An increase of fat mass and a decrease of lean mass with age/disease progression were observed.

Author Biographies

Thais Alves Cunha, Federal University of Rio Grande do Norte

Postgraduate Health Sciences Program.

Evellyn Câmara Grilo, Federal University of Rio Grande do Norte

Postgraduate Health Sciences Program.

Ádila Danielly de Souza Costa, Federal University of Rio Grande do Norte

Postgraduate Nutrition Program

Karina Marques Vermeulen-Serpa, Federal University of Rio Grande do Norte

Postgraduate Health Sciences Program.

Lúcia Leite-Lais, Federal University of Rio Grande do Norte

Department of Nutrition.

Mário Emílio Teixeira Dourado-Júnior, Federal University of Rio Grande do Norte

Department of Internal Medicine.

José Brandão-Neto, Federal University of Rio Grande do Norte

Department of Internal Medicine.

Sancha Helena de Lima Vale, Federal University of Rio Grande do Norte

Department of Nutrition.

References

Barja, S. (2016). Clinical Nutrition ESPEN Clinical assessment underestimates fat mass and overestimates resting energy expenditure in children with neuromuscular diseases, 15, 11–15.

Bayram, E., Topcu, Y., Karakaya, P., Bayram, M. T., Sahin, E., Gunduz, N., Yis, U., et al. (2013). Correlation between motor performance scales, body composition, and anthropometry in patients with duchenne muscular dystrophy. Acta Neurologica Belgica, 113(2), 133–137.

Bernabe-García, M., Rodríguez-Cruz, M., Atilano, S., Cruz-Guzmán, O. del R., Almeida-Becerril, T., Calder, P. C., & González, J. (2019). Body composition and body mass index in Duchenne muscular dystrophy: Role of dietary intake. Muscle and Nerve, 59(3), 295–302.

BRAZIL. (2011). Ministry of Health. Departament of Health Care. Department of Primary Care. Guidelines for the collection and analysis of anthropometric data in health services: Technical Standard of the Food and Nutritional Surveillance System - SISVAN. Brazil.

Caromano, F. A., Tanaka, C., João, S. M. A., Kamisaki, A. P., Yano, K. C., & Ide, M. R. (2010). Correlação da massa e porcentagem de gordura com a idade na distrofia muscular de Duchenne. Fisioterapia em movimento (Impresso), 23(2), 221–227.

Chumlea, W. M. C., Guo, S. S., & Steinbaugh, M. L. (1994). Prediction of stature from knee height for black and white adults and children with application to mobility impaired or handicapped persons. J. Am. Diet. Assoc., 94, 1385–8.

Cruz-Guzmán, O. D. R., Rodríguez-Cruz, M., & Escobar Cedillo, R. E. (2015). Systemic inflammation in duchenne muscular dystrophy: Association with muscle function and nutritional status. BioMed Research International, 7.

Darras, B. T., Urion, D. K., & Ghosh, P. S. (2000). Dystrophinopathies. (M. Adam, H. Ardinger, & R. Pagon, Eds.). Seattle: GeneReviews. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK1119/pdf/Bookshelf_NBK1119.pdf

Davidson, Z. E., & Truby, H. (2009). A review of nutrition in Duchenne muscular dystrophy. Journal of Human Nutrition and Dietetics, 22(5), 383–393.

Davis, J., Samuels, E., & Mullins, L. (2015). Nutrition Considerations in Duchenne Muscular Dystrophy. Nutrition in Clinical Practice, 30(4), 511–521.

Elliott, S. A., Davidson, Z. E., Davies, P. S. W., & Truby, H. (2015). Pediatric Neurology A Bedside Measure of Body Composition in Duchenne Muscular Dystrophy. Pediatric Neurology, 52(1), 82–87. Elsevier Inc.

Frisancho, A. R. (1990). Anthropometric Standards for the assessment of growth and nutritional status. University of Michigan Press, 189.

Gao, Q., & McNally, E. M. (2015). The Dystrophin Complex: structure, function and implications for therapy. Compr Physiol, 5(3), 1223–1239.

Grilo, E. C., Cunha, T. A., Costa, Á. D. S., Araújo, B. G. M., Lopes, M. M. G. D., Maciel, B. L. L., Alves, C. X., et al. (2020). Validity of bioelectrical impedance to estimate fat-free mass in boys with Duchenne muscular dystrophy. PLoS ONE, 15(11 November), 1–12.

Heymsfield, S. B., McManus, C., Smith, J., Stevens, V., & Nixon, D. W. (1982). Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. American Journal of Clinical Nutrition, 36(4), 680–690.

Hogan, S. E. (2008). Body Composition and Resting Energy Expenditure of Individuals With Duchenne and Becker Muscular Dystrophy. Canadian Journal of Dietetic Practice and Research, 69(4).

Ishizaki, M., Kedoin, C., Ueyama, H., Maeda, Y., Yamashita, S., & Ando, Y. (2017). Utility of skinfold thickness measurement in non-ambulatory patients with Duchenne muscular dystrophy. Neuromuscular Disorders, 27(1), 24–28. Elsevier B.V.

Joseph, S., Wang, C., Bushby, K., Guglier, M., Horrocks, I., Straub, V., Ahmed, S. F., et al. (2019). Fractures and Linear Growth in a Nationwide Cohort of Boys With Duchenne Muscular Dystrophy With and Without Glucocorticoid Treatment: Results From the UK NorthStar Database. JAMA Neurol.

Lalic, T., Vossen, R. H. A. M., Coffa, J., Schouten, J. P., Guc-Scekic, M., Radivojevic, D., Djurisic, M., et al. (2005). Deletion and duplication screening in the DMD gene using MLPA. European Journal of Human Genetics, 13(11), 1231–1234.

Lamb, M. M., Cai, B., Royer, J., Pandya, S., Soim, A., Valdez, R., Diguiseppi, C., et al. (2018). The effect of steroid treatment on weight in nonambulatory males with Duchenne muscular dystrophy. Wiley Periodicals, (July), 1–9.

Mok, E., Béghin, L., Gachon, P., Daubrosse, C., Fontan, J.-E., Cuisset, J.-M., Gottrand, F., et al. (2006). Estimating body composition in children with Duchenne muscular dystrophy: comparison of bioelectrical impedance analysis and skinfold-thickness measurement. The American journal of clinical nutrition, 83(1), 65–69.

Mok, E., Letellier, G., Cuisset, J. M., Denjean, A., Gottrand, F., & Hankard, R. (2010). Assessing change in body composition in children with Duchenne muscular dystrophy: Anthropometry and bioelectrical impedance analysis versus dual-energy X-ray absorptiometry. Clinical Nutrition, 29(5), 633–638. Elsevier Ltd.

Pereira, P. M. de L., Neves, F. S., Bastos, M. G., & Cândido, A. P. C. (2018). Adductor Pollicis Muscle Thickness for nutritional assessment : a systematic review. Rev. Bras. Enferm., 71(6), 3093–3102.

Pontes, J. F., Ferreira, G. M. H., Fregonezi, G., Sena-Evangelista, K. C. M. de, & Dourado Junior, M. E. (2012). Força muscular respiratória e perfil postural e nutricional em crianças com doenças neuromusculares. Fisioterapia em Movimento, 25(2), 253–261.

Rosa, V. S., Sales, C. M. M., & Andrade, M. A. C. (2017). Acompanhamento nutricional por meio da avaliação antropométrica de crianças e adolescentes em uma unidade básica de saúde. Rev. Bras. Pesq. Saúde, 19, 28–33.

Salera, S., Menni, F., Moggio, M., Guez, S., Sciacco, M., & Esposito, S. (2017). Nutritional challenges in duchenne muscular dystrophy. Nutrients, 9(6), 1–10.

Schaefer, F., Georgi, M., Zieger, A., & Scharer, K. (1994). Usefulness of Bioelectric Impedance and Skinfold Measurements in Predicting Fat-Free Mass Derived from Total Body Potassium in Children. Pediatric Research, 35(5).

Serpa, T. K. F., Nogueira, F. dos S., & Pompeu, F. A. M. S. (2014). Predição da massa corporal magra de adultos brasileiros através da área muscular do braço. Revista Brasileira de Medicina do Esporte, 20(3), 186–189.

Shoji, E., Sakurai, H., Nishino, T., Nakahata, T., Heike, T., Awaya, T., Fujii, N., et al. (2015). Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Scientific Reports, 5(August), 1–13. Nature Publishing Group.

Skalsky, A. J., Han, J. J., Abresch, R. T., Shin, C. S., & McDonald, C. M. (2009). Assessment of regional body composition with dual-energy X-ray absorptiometry in Duchenne muscular dystrophy: Correlation of regional lean mass and quantitative strength. Muscle and Nerve, 39(5), 647–651.

Statistics National Center for Health. (1987). Anthropometric Reference Data and Prevalence of Overweight United National Center for Health Statistics. Hyattsville, Md.

Takeshima, Y., Yagi, M., Okizuka, Y., Awano, H., Zhang, Z., Yamauchi, Y., Nishio, H., et al. (2010). Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. Journal of Human Genetics, 55(6), 379–388. Nature Publishing Group. Retrieved from http://dx.doi.org/10.1038/jhg.2010.49

Vermeulen, K. M., Lopes, M. M. G. D., Grilo, E. C., Alves, C. X., Machado, R. J. A., Lais, L. L., Brandão-neto, J., et al. (2019). Bioelectrical impedance vector analysis and phase angle in boys with Duchenne muscular dystrophy, 1, 1–9.

West, N. A., Yang, M. L., Weitzenkamp, D. A., Andrews, J., Meaney, F. J., Oleszek, J., Miller, L. A., et al. (2013). Patterns of Growth in Ambulatory Males with Duchenne Muscular Dystrophy. The Journal of Pediatrics, 163(6), 1759-1763.e1. Elsevier Ltd.

World Health Organization. (2006). WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-forlength, weight-for-height and body mass index-for-age. Retrieved from https://www.who.int/childgrowth/standards/technical_report/en/

Downloads

Published

06/06/2021

How to Cite

CUNHA, T. A.; GRILO, E. C.; COSTA, Ádila D. de S. .; VERMEULEN-SERPA, K. M.; LEITE-LAIS, L.; DOURADO-JÚNIOR, M. E. T.; BRANDÃO-NETO, J.; VALE, S. H. de L. When age matters: boys with Duchenne muscular dystrophy have growth delay and a fat mass accumulation, as they get older. Research, Society and Development, [S. l.], v. 10, n. 6, p. e44010615922, 2021. DOI: 10.33448/rsd-v10i6.15922. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15922. Acesso em: 21 nov. 2024.

Issue

Section

Health Sciences