Este trabajo se centró en el desarrollo de envases activos biodegradables con mezclas de poli (ácido láctico) (PLA), poli (etileno-co-acetato de vinilo) (EVA), polietilenglicol (PEG) y quitosano (QUI). Se investigaron las características morfológicas térmicas y mecánicas de las mezclas, así como, al mismo tiempo, la actividad antifúngica del envase. Para evaluar la actividad antimicrobiana de las mezclas PLA/EVA/PEG/QUI, las muestras se insertaron entre rebanadas de pan sin conservantes para evaluar su vida útil. Al comparar entre PLA/EVA/PEG, mezclas de PLA/EVA/PEG/QUI y PLA puro fue posible evidenciar la miscibilidad parcial, la disminución de la temperatura de transición vítrea (Tg) al incorporar PEG en las mezclas, una disminución de la fuerza fl exural del 71% y módulo de elasticidad del 80,4% a la mezcla PLA/ EVA/PEG/2.5QUI, así como un aumento del alargamiento a la rotura del 153% y del 392% a la tenacidad al impacto. Se observó un comportamiento similar a PLA/EVA/20PEG y PLA/EVA/PEG/5.0QUI. La película que contiene QUI entre las rebanadas de pan también influyó en la reducción de la actividad del agua y redujo aproximadamente un 35% en el recuento de mohos y levaduras en las rebanadas de pan. El quitosano en mezclas con PLA/EVA/PEG mostró potencial como agente antifúngico natural en envases de panadería.  

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.16964

Keywords:

Poly(lactic acid); Polyethylene glycol; Poly(ethylene-co-vinyl acetate); Chitosan; Antimicrobial; Bread; Packaging applications.

Abstract

This work focused on the development of biodegradable active packaging with poly(lactic acid) (PLA), poly(ethylene-co-vinyl acetate) (EVA), polyethylene glycol (PEG) and chitosan (QUI) blends. It investigated thermal and mechanical morphological characteristics of the blends, as the same time, the antifungal activity of the packaging. To assess the antimicrobial activity of the PLA/EVA/PEG/QUI blends, the samples were inserted between slices of bread with no preservative to the evaluation of their shelf life. By comparing between PLA/EVA/PEG, PLA/EVA/PEG/QUI blends and neat PLA was possible to evidence the partial miscibility, decreased glass transition temperature (Tg) by incorporating PEG into the blends, a decrease in flexural strength of 71% and elasticity modulus of 80.4% to PLA/EVA/PEG/2.5QUI blend, as well as an increase in elongation at break of 153% and 392% to impact toughness. A similar behavior was observed to PLA/EVA/20PEG and PLA/EVA/PEG/5.0QUI. The QUI-containing film among the bread slices has also influenced the water activity reduction, and reduced about 35% in the count of molds and yeasts in the slices of bread. Chitosan in mixtures with PLA/EVA/PEG showed potential as a natural antifungal agent in bakery packaging.

References

Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stabil, 97, 1822–1828. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2012.05.036

Aghjeh, M. R., Nazari, M., Khonakdar, H. A., Jafari, S. H., Wagenknecht, U., & Heinrich, G. (2015). In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach. Mater Design, 88, 1277–1289. https://doi.org/https://doi.org/10.1016/j.matdes.2015.09.081

Al-Owain, M., Kaya, N., Al-Shamrani, H., Al-Bakheet, A., Qari, A., Al-Muaigl, S., & Ghaziuddin, M. (2013). Autism Spectrum Disorder in a Child with Propionic Acidemia. In G. Brown, E. Morava, V. Peters, K. M. Gibson, & J. Zschocke (Eds.), JIMD Reports - Case and Research Reports (pp. 63–66). https://doi.org/https://doi.org/10.1007/8904_2012_143

Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., & Kenny, J. M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci, 38, 1720–1747. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2013.05.010

Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760–768. https://doi.org/10.1016/j.polymertesting.2013.03.016

Bhiogade, A., Kannan, M., & Devanathan, S. (2020). Degradation kinetics study of Poly lactic acid(PLA) based biodegradable green composites. Materials Today: Proceedings, 24, 806–814. https://doi.org/10.1016/j.matpr.2020.04.389

Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng, 119, 236–243. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2013.05.026

Brul, S., & Coote, P. (1999). Preservative agents in foods: Mode of action and microbial resistance mechanisms. Int J Food Microbiol, 50, 1–17. https://doi.org/https://doi.org/10.1016/S0168-1605(99)00072-0

Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with $alpha$--tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng, 100, 239–244. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2010.04.005

Choi, K., Choi, M.-C., Han, D.-H., Park, T.-S., & Ha, C.-S. (2013). Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur Polym J, 49, 2356–2364. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2013.05.027

Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., & Marconcini, J. M. (2016). Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Films. Journal of Polymers and the Environment, 24(4), 363–371. https://doi.org/10.1007/s10924-016-0785-4

Correa-Pacheco, Z. N., Black-Solís, J. D., Ortega-Gudiño, P., Sabino-Gutiérrez, M. A., Benítez-Jiménez, J. J., Barajas-Cervantes, A., & Hurtado-Colmenares, L. B. (2020). Preparation and characterization of bio-based PLA/PBAT and cinnamon essential oil polymer fibers and life-cycle assessment from hydrolytic degradation. Polymers, 12(1), 1–32. https://doi.org/10.3390/polym12010038

Correlo, V. M., Boesel, L. F., Bhattacharya, M., Mano, J. F., Neves, N. M., & Reis, R. L. (2005). Properties of melt processed chitosan and aliphatic polyester blends. Materials Science and Engineering A, 403, 57–68. https://doi.org/10.1016/j.msea.2005.04.055

Danila Merino, Yamila Mansilla, Claudia Casalongué, & Vera Alvarez. (2016). Propiedades Fisicoquimicas Y Antibacteriales De Mezclas Pla-Quitosano Obtenidas Por Casting Con Potencial Uso Como Acolchados Agrícolas. Avances En Ciencias e Ingeniería, 7(1), 27–39.

Dengate, S., & Ruben, A. (2002). Controlled trial of cumulative behavioural effects of a common bread preservative. J Paediatr Child Health, 38, 373–376. https://doi.org/https://doi.org/10.1046/j.1440-1754.2002.00009.x

Dhall, R. K., & Alam, M. S. (2020). Biodegradable Packaging. Encyclopedia of Renewable and Sustainable Materials, 26–43. https://doi.org/10.1016/b978-0-12-803581-8.11516-4

dos Santos, J. L. P., Bernardi, A. O., Pozza Morassi, L. L., Silva, B. S., Copetti, M. V., & S. Sant’Ana, A. (2016). Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Research International, 87, 103–108. https://doi.org/10.1016/j.foodres.2016.07.002

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Mat Sci Eng C-Mater, 33, 1819–1841. https://doi.org/https://doi.org/10.1016/j.msec.2013.01.010

FAO/WHO. (1995). General Standard for Food Additives. Codex Alimentarius: International Food Standards, 192, 1–475. Retrieved from http://www.fao.org/gsfaonline/docs/CXS_192e.pdf

Ganji, F., & Abdekhodaie, M. J. (2008). Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohyd Polym, 74, 435–441. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.03.017

Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. Current Opinion in Food Science, 29, 1–6. https://doi.org/10.1016/j.cofs.2019.06.010

Guinault, A., Sollogoub, C., Domenek, S., Grandmontagne, A., & Ducruet, V. (2010). Influence of crystallinity on gas barrier and mechanical properties of pla food packaging films. International Journal of Material Forming, 3(SUPPL. 1), 603–606. https://doi.org/10.1007/s12289-010-0842-9

Hassouna, F., Raquez, J.-M., Addiego, F., Dubois, P., Toniazzo, V., & Ruch, D. (2011). New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J, 47, 2134–2144. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.08.001

Heras-Mozos, R., Muriel-Galet, V., López-Carballo, G., Catalá, R., Hernández-Muñoz, P., & Gavara, R. (2019). Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. International Journal of Food Microbiology, 290(September 2018), 42–48. https://doi.org/10.1016/j.ijfoodmicro.2018.09.024

Hsieh, D. P. H. ., Huang, H.-Y. ., Ling, M.-P. ., Chen, Y.-S. ., Huang, L.-L. I. ., Wu, C.-H. ., & Chiang, C.-F. (2012). Total dietary studies and food safety assessment in Taiwan-food preservatives as an illustration. Journal of Food and Drug Analysis, 20(4), 744–763.

Jamshidian, M., Tehrany, E. A., & Desobry, S. (2013). Antioxidants Release from Solvent-Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and Bioprocess Technology, 6(6), 1450–1463. https://doi.org/10.1007/s11947-012-0830-9

Kechichian, V., Ditchfield, C., Veiga-Santos, P., & Tadini, C. C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava

starch. LWT - Food Sci Technol, 43, 1088–1094. https://doi.org/10.1016/j.lwt.2010.02.014

León, A. E., Durán, E., & de Barber, C. B. (2002). Utilization of Enzyme Mixtures To Retard Bread Crumb Firming. J Agric Food Chem, 50, 1416–1419. https://doi.org/https://dx.doi.org/10.1021/jf0106446

Licciardello, F., Cipri, L., & Muratore, G. (2014). Influence of packaging on the quality maintenance of industrial bread by comparative shelf life testing. Food Packaging and Shelf Life, 1, 19–24. https://doi.org/http://dx.doi.org/10.1016/j.fpsl.2013.10.001

Ling, M. P., Lien, K. W., Wu, C. H., Ni, S. P., Huang, H. Y., & Hsieh, D. P. H. (2015). Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet in taiwan. In Journal of Agricultural and Food Chemistry (Vol. 63). https://doi.org/10.1021/jf503987y

Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J, 48, 146–154. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.10.015

Miś, A., Krekora, M., Niewiadomski, Z., Dziki, D., & Nawrocka, A. (2020). Water redistribution between model bread dough components during mixing. Journal of Cereal Science, 95, 103035. https://doi.org/10.1016/j.jcs.2020.103035

Moura, I., Nogueira, R., Bounor-Legare, V., & Machado, A. V. (2012). Synthesis of EVA-g-PLA copolymers using transesterification reactions. Mater Chem Phys, 134, 103–110. https://doi.org/https://doi.org/10.1016/j.matchemphys.2012.02.036

Muzzarelli, R. A. A., Muzzarelli, C., Tarsi, R., Miliani, M., Gabbanelli, F., & Cartolari, M. (2001). Fungistatic Activity of Modified Chitosans against Saprolegnia parasitica. Biomacromolecules, 2, 165–169. https://doi.org/10.1021/bm000091s

Pena, L., & Burton, B. K. (2012). Survey of Health Status and Complications Among Propionic Acidemia Patients. Am J Med Genet Part A, 158A, 1641–1646. https://doi.org/https://doi.org/10.1002/ajmg.a.35387

Phechkrajang, C. M., & Yooyong, S. (2017). Fast and simple method for semiquantitative determination of calcium propionate in bread samples. J Food Drug Anal, 25, 254–259. https://doi.org/https://doi.org/10.1016/j.jfda.2016.03.013

Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293(January), 72–78. https://doi.org/10.1016/j.ijfoodmicro.2019.01.006

Rhim, J. W., Hong, S. I., Park, H. M., & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(16), 5814–5822. https://doi.org/10.1021/jf060658h

Sébastien, F., Stéphane, G., Copinet, A., & Coma, V. (2006). Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydrate Polymers, 65(2), 185–193. https://doi.org/10.1016/j.carbpol.2006.01.006

Sengupta, S., Manna, S., Roy, U., & Das, P. (2020). Manufacturing of Biodegradable Poly Lactic Acid (PLA): Green Alternatives to Petroleum Derived Plastics. In Encyclopedia of Renewable and Sustainable Materials. https://doi.org/10.1016/b978-0-12-803581-8.11013-6

Shuaib, T., Al-Hashmi, N., Ghaziuddin, M., Megdad, E., Abebe, D., Al-Saif, A., & Al-Owain, M. (2012). Propionic Acidemia Associated With Visual Hallucinations. J Child Neurol, 27, 799–803. https://doi.org/https://doi.org/10.1177/0883073811426929

Sopiwnyk, E., Young, G., Frohlich, P., Borsuk, Y., Lagassé, S., Boyd, L., & Malcolmson, L. (2020). Effect of pulse flour storage on flour and bread baking properties. LWT, 121, 108971. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108971

Srisa, A., & Harnkarnsujarit, N. (2020). Antifungal films from trans-cinnamaldehyde incorporated poly(lactic acid) and poly(butylene adipate-co-terephthalate) for bread packaging. Food Chemistry, 333(July), 127537. https://doi.org/10.1016/j.foodchem.2020.127537

Sungsanit, K., Kao, N., Bhattacharya, S., & Pivsaart, S. (2010). Physical and rheological properties of plasticized linear and branched PLA. Korea-Aust Rheol J, 22, 187–195.

Suwanamornlert, P., Kerddonfag, N., Sane, A., Chinsirikul, W., Zhou, W., & Chonhenchob, V. (2020). Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packaging and Shelf Life, 25(April), 100515. https://doi.org/10.1016/j.fpsl.2020.100515

Swain, A., Soutter, V., Loblay, R., & Truswell, A. S. (1985). Salicylates, oligoantigenic diets, and behavior. Lancet, 326, 41–42. https://doi.org/https://doi.org/10.1016/S0140-6736(85)90089-3

Tanase, C. E., & Spiridon, I. (2014). PLA/chitosan/keratin composites for biomedical applications. Materials Science and Engineering C, 40, 242–247. https://doi.org/10.1016/j.msec.2014.03.054

Thomas, L. V, & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives – Sorbic Acid. In C. A. Batt & M. Lou Tortorello (Eds.), Encyclopedia of Food Microbiology (2nd ed., pp. 102–107). London, UK: Elsevier Ltd. All.

Torres-Huerta, A. M., Palma-Ramírez, D., Domínguez-Crespo, M. A., Del Angel-López, D., & De La Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. Eur Polym J, 61, 285–299. https://doi.org/http://dx.doi.org/10.1016/j.eurpolymj.2014.10.016

Uz, M., & Altınkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. Lebensm-Wiss Technol, 44, 2302–2309. https://doi.org/https://doi.org/10.1016/j.lwt.2011.05.003

van den Broek, L. A. M., Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohyd Polym, 116, 237–242. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.07.039

Wang, H., Qian, J., & Ding, F. (2018). Emerging Chitosan-Based Films for Food Packaging Applications. Journal of Agricultural and Food Chemistry, 66(2), 395–413. https://doi.org/10.1021/acs.jafc.7b04528

Yuniarto, K., Purwanto, Y. A., Purwanto, S., Welt, B. A., Purwadaria, H. K., & Sunarti, T. C. (2016). Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings, 1725. https://doi.org/10.1063/1.4945555

Zhang, H., Li, R., & Liu, W. (2011). Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits : A Review. Int J Mol Sci, 12, 917–934. https://doi.org/https://doi.org/10.3390/ijms12020917

Zhao, Y.-Q., Cheung, H.-Y., Lau, K.-T., Xu, C.-L., Zhao, D.-D., & Li, H.-L. (2010). Silkworm silk/poly(lactic acid) biocomposites: Dynamic mechanical, thermal and biodegradable properties. Polym Degrad Stabil, 95, 1978–1987. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2010.07.015

Downloads

Published

01/08/2021

How to Cite

CAVALLI, L. R. .; KLEIN, J. M. .; SANDRI, I. G.; BRANDALISE, R. Este trabajo se centró en el desarrollo de envases activos biodegradables con mezclas de poli (ácido láctico) (PLA), poli (etileno-co-acetato de vinilo) (EVA), polietilenglicol (PEG) y quitosano (QUI). Se investigaron las características morfológicas térmicas y mecánicas de las mezclas, así como, al mismo tiempo, la actividad antifúngica del envase. Para evaluar la actividad antimicrobiana de las mezclas PLA/EVA/PEG/QUI, las muestras se insertaron entre rebanadas de pan sin conservantes para evaluar su vida útil. Al comparar entre PLA/EVA/PEG, mezclas de PLA/EVA/PEG/QUI y PLA puro fue posible evidenciar la miscibilidad parcial, la disminución de la temperatura de transición vítrea (Tg) al incorporar PEG en las mezclas, una disminución de la fuerza fl exural del 71% y módulo de elasticidad del 80,4% a la mezcla PLA/ EVA/PEG/2.5QUI, así como un aumento del alargamiento a la rotura del 153% y del 392% a la tenacidad al impacto. Se observó un comportamiento similar a PLA/EVA/20PEG y PLA/EVA/PEG/5.0QUI. La película que contiene QUI entre las rebanadas de pan también influyó en la reducción de la actividad del agua y redujo aproximadamente un 35% en el recuento de mohos y levaduras en las rebanadas de pan. El quitosano en mezclas con PLA/EVA/PEG mostró potencial como agente antifúngico natural en envases de panadería.  . Research, Society and Development, [S. l.], v. 10, n. 9, p. e50010916964, 2021. DOI: 10.33448/rsd-v10i9.16964. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16964. Acesso em: 18 dec. 2024.

Issue

Section

Engineerings