Insights about drug interactions used in lymphoma treatments and in experimental COVID-19 therapy

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17962

Keywords:

SARS-CoV-2; Hodgkin; non-Hodgkin; Drug-drug interaction; Cytochrome P450 enzyme system.

Abstract

Lymphomas are neoplasms characterized by an immunocompromised tumor environment that induces inflammatory processes whose defense cells production can be further affected by chemotherapy. These details lead to the supposition that individuals with these cancers have more severe clinical complications when contaminated by SARS-CoV-2, which makes it necessary to pay attention to the correct therapeutic management. This study summarizes the drugs used in the treatment of lymphomas and in the experimental therapy of COVID-19, and discusses the possible interactions expected between the drugs used in both illnesses. Most drug-drug interaction occur through changes in the cytochrome P450 enzyme system metabolism or the P glycoprotein efflux transporter (gp-P). Depending of combinations, there may be an increase or decrease in the concentration of the drug and, consequently, an increase in toxicity or a decrease in efficacy, which means that pharmacokinetics should be strongly considered to promote drug safety and better management patients with COVID-19 and lymphomas.

References

Ayerdi, O., Puerta, T., Clavo, P., Vera, M., Ballesteros, J., Fuentes, M. E., et al. (2020). Preventive Efficacy of Tenofovir/Emtricitabine Against Severe Acute Respiratory Syndrome Coronavirus 2 Among Pre-Exposure Prophylaxis Users. Open Forum Infectious Diseases, 7(11), 1-7.

Ahn, D., Shin, H., Kim, M., Lee, S., Kim, H., Myoung, J., et al. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of Microbiology and Biotechnology, 30, 313-324. 10.4014/jmb.2003.03011

Alraouji, N. N., Al‐Mohanna, F. H., Ghebeh, H., Arafah, M., Almeer, R., Al‐Tweigeri, T., & Aboussekhra, A. (2020). Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple‐negative breast cancer. Molecular Carcinogenesis, 59, 1041-1051. https://doi.org/10.1002/mc.23234

Back, D., Sekar, V., & Hoetelmans, R. M. (2008). Darunavir: pharmacokinetics and drug interactions. Antiviral Therapy, 13, 1-13. https://pubmed.ncbi.nlm.nih.gov/18389894/

Backman, J. T., Filppula, A. M., Niemi, M., & Neuvonen, P. J. (2016). Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacological Reviews, 68, 168-241. 10.1124/pr.115.011411

Biblioteca Virtual em Saúde. (2020). DeCS/MeSH Descritores em Ciências da Saúde. Retrieved May 13, 2021, from https://decs.bvsalud.org/

Blaising, J., Polyak, S. J., & Pécheur, E. I. (2014). Arbidol as a broad-spectrum antiviral: an update. Antiviral Research, 107, 84-94. 10.1016/j.antiviral.2014.04.006

Blower, P., De, Wit. R., Goodin, S., & Aapro, M. (2002). Drug–drug interactions in oncology: why are they important and can they be minimized? Critical Reviews in Oncology/Hematology, 55, 117-142. 10.1016/j.critrevonc.2005.03.007

Brown, B. L., & McCullough, J. (2020). Treatment for emerging viruses: convalescent plasma and COVID-19. Transfusion and Apheresis Science, 59, 1-5. 10.1016/j.transci.2020.102790

Chaccour, C., Casellas, A., Blanco-Di Matteo, A., Pineda, I., Fernandez-Montero, A., Ruiz-Castillo, P., et al. (2021). The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine, 32, 1-9.

Cheung, M. C., Hicks, L. K., & Leitch, H. A. (2010). Excessive Neurotoxicity with ABVD When Combined with Protease Inhibitor–Based Antiretroviral Therapy in the Treatment of AIDS-Related Hodgkin Lymphoma. Clinical Lymphoma, Myeloma & Leukemia, 10, 22-25. 10.3816/CLML.2010.n.025

Chu, H., Chan, J. F. W., Yuen, T. T., Shuai, H., Yuan, S., Wang, Y., et al. (2020). Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe, 1(1), 14-23. https://doi.org/10.1016/S2666-5247(20)30004-5

Conde, L. F., Aedo, K. P. & Miraval-Niño, D. G. T. (2017). Macrophage activation syndrome: Experience in the questioned role of etoposide. Reumatologia Clínica, 13, 239-240. 10.1016/j.reuma.2016.10.004

Dabbous, H. M., Abd-Elsalam, S., El-Sayed, M. H., Sherief, A. F., Ebeid, F. F., Abd El Ghafar, M. S., et al. (2021). Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Archives of Virology, 166(3), 949-954.

Daly, A. K., Rettie, A. E., Fowler, D. M., & Miners, J. O. (2018). Pharmacogenomics of CYP2C9: functional and clinical considerations. Journal of Personalized Medicine, 8(1), 1-31. 10.3390/jpm8010001

Di Lorenzo, G., Di Trolio, R., Kozlakidis, Z., Busto, G., Ingenito, C., Buonerba, L., et al. (2020). COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Critical Reviews in Oncology/Hematology, 152, 1-8. 10.1016/j.critrevonc.2020.102991

Dömling, A., & Gao, L. (2020). Chemistry and Biology of SARS-CoV-2. Chem, 11, 1283-1295. https://doi.org/10.1016/j.chempr.2020.04.023

El-Ghiaty, M. A., Shoieb, S. M., & El-Kadi, A. O. S. (2020). Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Medical Hypotheses, 1441, 1-37. https://doi.org/10.1016/j.mehy.2020.110033

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writer, 24(4), 230-235. 10.1179/2047480615Z.000000000329

Flepisi, B. T, Bouic, P., Sissolak, G., & Rosenkranz, B. (2014). Drug–drug interactions in HIV positive cancer patients. Biomedicine Pharmacotherapy, 68, 665-677. 10.1016/j.biopha.2014.04.010

Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., & Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Research, 100, 446-454. 10.1016/j.antiviral.2013.09.015

Gaudin, D., Yelding, K. L., Stabler, A., & Brown, J. (1971). The Effect of DNA Repair Inhibitors on the Response of Tumors Treated with X-Ray and Alkylating Agents. Proc Soc Exp Biol Med, 137, 202-206. 10.3181/00379727-137-35544

Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob. Agents, 56, 1-6. 10.1016/j.ijantimicag.2020.105949

Giuliani, I., Baeza-Squiban, A., & Marano, F. (1997). Early cytotoxic effects of mechlorethamine, a nitrogen mustard, on mammalian airway epithelium. Toxicol. In Vitro, 11, 695-702. 10.1016/s0887-2333(97)00070-2

Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), 2327-2336.

He, W., Chen, L., Chen, L., Yuan, G., Fang, Y., Chen, W., et al. (2020). COVID-19 in persons with haematological cancers. Leukemia, 34, 1637–1645. https://www.nature.com/articles/s41375-020-0836-7

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162, 1239-1249. 10.1111/j.1476-5381.2010.01127.x

Hull, M. W., & Montaner, J. S. (2011). Ritonavir-boosted protease inhibitors in HIV therapy. Annals of Medicine, 43, 375-388. 10.3109/07853890.2011.572905

Instituto Nacional de Câncer (INCA). O que é câncer? https://www.inca.gov.br/o-que-e-cancer.

Jafari, A., Dadkhahfar, S., & Perseh, S. (2020). Considerations for interactions of drugs used for the treatment of COVID-19 with anti-Cancer treatments. Critical Reviews in Oncology/Hematology, 151, 1-6. 10.1016/j.critrevonc.2020.102982

Kim, R. B. (2002). Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev, 34, 47-54. 10.1081/dmr-120001389

Kishida, D., Okuda, Y., Onishi, M., Takebayashi, M., Matoba, K., Jouyama, K., et al. (2011). Successful tocilizumab treatment in a patient with adult-onset Still’s disease complicated by chronic active hepatitis B and amyloid A amyloidosis. Modern Rheumatology, 21, 215-218. 10.1007/s10165-010-0365-8

Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., et al. (2018). Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antiviral Therapy, 23, 617-622. 10.3851/IMP3243

Lambertini, M., Toss, A., Passaro, A., Criscitiello, C., Cremolini, C., Cardone, C., et al. (2020). Cancer care during the spread of coronavirus disease 2019 (COVID-19) in Italy: Young oncologists’ perspective. ESMO Open, 5, 1-4. oi:10.1136/esmoopen-2020-000759.

Leszczynska, A., Molins, B., Fernández, E., Adán, A., & Ortiz-Perez, S. (2019). Cytokine production in thyroid eye disease: in vitro effects of dexamethasone and IL-6 blockade with tocilizumab. Graefes’s Archive for Clinical and Experimental Ophthalmology, 257, 2307-2314. 10.1007/s00417-019-04419-7

Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6, 1-4. 10.1038/s41421-020-0156-0

Makinson, A., Martelli, N., Peyriere, H., Turriere, C., Moing, V., & Reynes, J. (2007). Profound neutropenia resulting from interaction between antiretroviral therapy and vinblastine in a patient with HIV‐associated Hodgkin's disease. European Journal of Haematology, 78, 358-360. 10.1111/j.1600-0609.2007.00827.x

Malla, S., Niraula, N. P., Singh, B., Liou, K., & Sohng, J. K. (2010). Limitations in doxorubicin production from Streptomyces peucetius. Microbiology Research, 165, 427-435. https://doi.org/10.1016/j.micres.2009.11.006

Manikandan, P., & Nagini, S. (2018). Cytochrome P450 structure, function and clinical significance: a review. Current Drug Targets. 19, 38-54. 10.2174/1389450118666170125144557

Martin, J., & Fay, M. (2001). Cytochrome P450 drug interactions: are they clinically relevant?. Australian Prescriber, 24, 10-12. https://www.aafp.org/afp/2007/0801/p391.html

McMullan, B. J., & Mostaghim, M. (2015). Prescribing azithromycin. Australian Prescriber, 38, 87-90. 10.18773/austprescr.2015.030

Meriglier, E., Rivoisy, C., Hessamfar, M., Bernard, N., Aureau, I., Lapoirie, J., et al. (2021). Safety of hydroxychloroquine and darunavir or lopinavir in COVID-19 infection. Journal of Antimicrobial Chemotherapy, 76(2), 482-486. https://doi.org/10.1093/jac/dkaa441

Nojomi, M., Yassin, Z., Keyvani, H., Makiani, M. J., Roham, M., Laali, A., et al. (2020). Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infectious Diseases, 20(1), 1-10. 10.1186/s12879-020-05698-w

Olin, J. L., Klibanov, O., Chan, A., & Spooner, L. M. Managing pharmacotherapy in people living with HIV and concomitant malignancy. Annals Pharmacotherapy, 53, 812-832. 10.1177/1060028019833038

Page, M., & Taylor, S. (2018). Antiretroviral pharmacology. Medicine, 46(5), 287-292. https://doi.org/10.1016/j.mpmed.2013.05.004

PubChem. Compound Summary. Vincristine, https://pubchem.ncbi.nlm.nih.gov/compound/Vincristine.

PubChem. Compound Summary. Procarbazine, https://pubchem.ncbi.nlm.nih.gov/compound/Procarbazine

PubChem. Compound Summary. Prednisone, https://pubchem.ncbi.nlm.nih.gov/compound/Prednisone.

Qu, X., Sheng, J., Shen, L., Su, J., Xu, Y., Xie, Q., Wu, Y., Zhang, X., & Sun, L. (2017). Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One, 12, 1-12. 10.1371/journal.pone.0173712

Peter, W., Mafham, M., Jennifer, L. B., Linsell, L., Staplin, N., & Emberson, J. (2020). Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RE-COVERY): a randomized, controlled, open-label, platform trial, 396, 1345-1352, The Lancet. https://doi.org/10.1016/S0140-6736(20)32013-4

Rezaee, H., Pourkarim, F., Pourtaghi‐Anvarian, S., Entezari‐Maleki, T., Asvadi‐Kermani, T., & Nouri‐Vaskeh, M. (2021). Drug‐drug interactions with candidate medications used for COVID‐19 treatment: An overview. Pharmacology Research & Perspectives, 9(1), 1-18.

Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., Mcginn, T., Davidson, K. W., et al. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Journal of the American Medical Association, 323, 2052-2059. 10.1001/jama.2020.6775

Schrezenmeier, E., & Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 16, 1-12. 10.1038/s41584-020-0372-x

Sessa, C., Gianni, L., Garassino, M., & Van Halteren, H. (2012). Handbook of clinical pharmacology of anti-cancer agents. Viganello-Lugano: ESMO. https://oncologypro.esmo.org/education-library/esmo-handbooks/clinical-pharmacology-of-anti-cancer-agents

Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., et al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11, 1-14. 10.1038/s41467-019-13940-6

Slimano, F., et al. (2020). Cancer, immune suppression and Coronavirus Disease-19 (COVID-19): Need to manage drug safety (French Society for Oncology Pharmacy [SFPO] guidelines). Cancer Treatment Reviews, 88, 1-18. 10.1016/j.ctrv.2020.102063

Srivastava, V., & Lee, H. (2015). Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. European Journal of Pharmacology. 762, 472-486. 10.1016/j.ejphar.2015.04.048

Ueda, M., Martins, R., Hendrie, P. C., McDonnell, T., Crews, J. R., & Wong, T. L. (2020). Managing cancer care during the COVID-19 pandemic: agility and collaboration toward a common goal. Journal of the National Comprehensive Cancer Network, 18(4), 366-369.

Umezawa, H. (2012). Bleomycin. In: Mechanism of action of antimicrobial and antitumor agents. New York, NY: Springer Science & Business Media. https://www.springer.com/gp/book/9783642463068

Vardanyan, R., & Hruby, V. (2006). Antineoplastics. In: Synthesis of essential drugs (pp 389-418). Elsevier. https://www.elsevier.com/books/synthesis-of-essential-drugs/vardanyan/978-0-444-52166-8

Wang, B., Li, R., Lu, Z., & Huang, Y. (2020). Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging, 12, 6049-6057. 10.18632/aging.103000

Wassner, C., Bradley, N., & Lee, Y. (2020). A Review and clinical understanding of tenofovir: tenofovir disoproxil fumarate versus tenofovir alafenamide. Journal of the International Association of Providers of AIDS Care, 19, 1-10. 10.1177/2325958220919231

Woods, D., & Turchi, J. J. (2013). Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biology & Therapy, 14, 379-389. 10.4161/cbt.23761

World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19, https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 8, 420-422. 10.1016/S2213-2600(20)30076-X

Zhang, Y. B., & Gui, J. F. (2012). Molecular regulation of interferon antiviral response in fish. Developmental and Comparative Immunology. 38, 193-202. 10.1016/j.dci.2012.06.003

Zhou, S-F. (2008). Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 38, 802-832. 10.1080/00498250701867889

Zhou, S-F. (2008). Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Current Drug Metabolism, 9, 310-322. 10.2174/138920008784220664

Published

24/07/2021

How to Cite

ARAÚJO , M. I. F. de; SILVA , R. B. da; BARBOSA, P. P. de S. . Insights about drug interactions used in lymphoma treatments and in experimental COVID-19 therapy. Research, Society and Development, [S. l.], v. 10, n. 9, p. e18910917962, 2021. DOI: 10.33448/rsd-v10i9.17962. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17962. Acesso em: 28 nov. 2024.

Issue

Section

Review Article