Considerações sobre interações entre medicamentos usados no tratamento de linfomas e na terapia experimental da COVID-19
DOI:
https://doi.org/10.33448/rsd-v10i9.17962Palavras-chave:
SARS-CoV-2; Hodgkin; não-Hodgkin; Interação droga-droga; Sistema enzimático do citocromo P450.Resumo
Os linfomas são neoplasias caracterizadas por um ambiente tumoral imunocomprometido que induz processos inflamatórios cuja produção de células de defesa pode ser posteriormente afetada pela quimioterapia. Esses detalhes levam a supor que indivíduos com esses cânceres apresentam complicações clínicas mais graves quando contaminados pelo SARS-CoV-2, o que torna necessário a atenção para o correto manejo terapêutico. Assim, este estudo resume os medicamentos usados no tratamento dos linfomas e na terapia experimental da COVID-19, e discute as possíveis interações esperadas entre os medicamentos. A maioria das interações medicamentosas ocorre por meio de alterações no metabolismo do sistema enzimático do citocromo P450 ou no transportador de efluxo da glicoproteína P (gp-P). Dependendo das combinações, pode haver aumento ou diminuição da concentração do medicamento e, consequentemente, aumento da toxicidade ou diminuição da eficácia, o que significa que a farmacocinética deve ser fortemente considerada para promover a segurança do medicamento e melhor manejo de pacientes com COVID- 19 e linfomas.
Referências
Ayerdi, O., Puerta, T., Clavo, P., Vera, M., Ballesteros, J., Fuentes, M. E., et al. (2020). Preventive Efficacy of Tenofovir/Emtricitabine Against Severe Acute Respiratory Syndrome Coronavirus 2 Among Pre-Exposure Prophylaxis Users. Open Forum Infectious Diseases, 7(11), 1-7.
Ahn, D., Shin, H., Kim, M., Lee, S., Kim, H., Myoung, J., et al. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of Microbiology and Biotechnology, 30, 313-324. 10.4014/jmb.2003.03011
Alraouji, N. N., Al‐Mohanna, F. H., Ghebeh, H., Arafah, M., Almeer, R., Al‐Tweigeri, T., & Aboussekhra, A. (2020). Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple‐negative breast cancer. Molecular Carcinogenesis, 59, 1041-1051. https://doi.org/10.1002/mc.23234
Back, D., Sekar, V., & Hoetelmans, R. M. (2008). Darunavir: pharmacokinetics and drug interactions. Antiviral Therapy, 13, 1-13. https://pubmed.ncbi.nlm.nih.gov/18389894/
Backman, J. T., Filppula, A. M., Niemi, M., & Neuvonen, P. J. (2016). Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacological Reviews, 68, 168-241. 10.1124/pr.115.011411
Biblioteca Virtual em Saúde. (2020). DeCS/MeSH Descritores em Ciências da Saúde. Retrieved May 13, 2021, from https://decs.bvsalud.org/
Blaising, J., Polyak, S. J., & Pécheur, E. I. (2014). Arbidol as a broad-spectrum antiviral: an update. Antiviral Research, 107, 84-94. 10.1016/j.antiviral.2014.04.006
Blower, P., De, Wit. R., Goodin, S., & Aapro, M. (2002). Drug–drug interactions in oncology: why are they important and can they be minimized? Critical Reviews in Oncology/Hematology, 55, 117-142. 10.1016/j.critrevonc.2005.03.007
Brown, B. L., & McCullough, J. (2020). Treatment for emerging viruses: convalescent plasma and COVID-19. Transfusion and Apheresis Science, 59, 1-5. 10.1016/j.transci.2020.102790
Chaccour, C., Casellas, A., Blanco-Di Matteo, A., Pineda, I., Fernandez-Montero, A., Ruiz-Castillo, P., et al. (2021). The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine, 32, 1-9.
Cheung, M. C., Hicks, L. K., & Leitch, H. A. (2010). Excessive Neurotoxicity with ABVD When Combined with Protease Inhibitor–Based Antiretroviral Therapy in the Treatment of AIDS-Related Hodgkin Lymphoma. Clinical Lymphoma, Myeloma & Leukemia, 10, 22-25. 10.3816/CLML.2010.n.025
Chu, H., Chan, J. F. W., Yuen, T. T., Shuai, H., Yuan, S., Wang, Y., et al. (2020). Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe, 1(1), 14-23. https://doi.org/10.1016/S2666-5247(20)30004-5
Conde, L. F., Aedo, K. P. & Miraval-Niño, D. G. T. (2017). Macrophage activation syndrome: Experience in the questioned role of etoposide. Reumatologia Clínica, 13, 239-240. 10.1016/j.reuma.2016.10.004
Dabbous, H. M., Abd-Elsalam, S., El-Sayed, M. H., Sherief, A. F., Ebeid, F. F., Abd El Ghafar, M. S., et al. (2021). Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Archives of Virology, 166(3), 949-954.
Daly, A. K., Rettie, A. E., Fowler, D. M., & Miners, J. O. (2018). Pharmacogenomics of CYP2C9: functional and clinical considerations. Journal of Personalized Medicine, 8(1), 1-31. 10.3390/jpm8010001
Di Lorenzo, G., Di Trolio, R., Kozlakidis, Z., Busto, G., Ingenito, C., Buonerba, L., et al. (2020). COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Critical Reviews in Oncology/Hematology, 152, 1-8. 10.1016/j.critrevonc.2020.102991
Dömling, A., & Gao, L. (2020). Chemistry and Biology of SARS-CoV-2. Chem, 11, 1283-1295. https://doi.org/10.1016/j.chempr.2020.04.023
El-Ghiaty, M. A., Shoieb, S. M., & El-Kadi, A. O. S. (2020). Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Medical Hypotheses, 1441, 1-37. https://doi.org/10.1016/j.mehy.2020.110033
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writer, 24(4), 230-235. 10.1179/2047480615Z.000000000329
Flepisi, B. T, Bouic, P., Sissolak, G., & Rosenkranz, B. (2014). Drug–drug interactions in HIV positive cancer patients. Biomedicine Pharmacotherapy, 68, 665-677. 10.1016/j.biopha.2014.04.010
Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., & Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Research, 100, 446-454. 10.1016/j.antiviral.2013.09.015
Gaudin, D., Yelding, K. L., Stabler, A., & Brown, J. (1971). The Effect of DNA Repair Inhibitors on the Response of Tumors Treated with X-Ray and Alkylating Agents. Proc Soc Exp Biol Med, 137, 202-206. 10.3181/00379727-137-35544
Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob. Agents, 56, 1-6. 10.1016/j.ijantimicag.2020.105949
Giuliani, I., Baeza-Squiban, A., & Marano, F. (1997). Early cytotoxic effects of mechlorethamine, a nitrogen mustard, on mammalian airway epithelium. Toxicol. In Vitro, 11, 695-702. 10.1016/s0887-2333(97)00070-2
Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), 2327-2336.
He, W., Chen, L., Chen, L., Yuan, G., Fang, Y., Chen, W., et al. (2020). COVID-19 in persons with haematological cancers. Leukemia, 34, 1637–1645. https://www.nature.com/articles/s41375-020-0836-7
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162, 1239-1249. 10.1111/j.1476-5381.2010.01127.x
Hull, M. W., & Montaner, J. S. (2011). Ritonavir-boosted protease inhibitors in HIV therapy. Annals of Medicine, 43, 375-388. 10.3109/07853890.2011.572905
Instituto Nacional de Câncer (INCA). O que é câncer? https://www.inca.gov.br/o-que-e-cancer.
Jafari, A., Dadkhahfar, S., & Perseh, S. (2020). Considerations for interactions of drugs used for the treatment of COVID-19 with anti-Cancer treatments. Critical Reviews in Oncology/Hematology, 151, 1-6. 10.1016/j.critrevonc.2020.102982
Kim, R. B. (2002). Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev, 34, 47-54. 10.1081/dmr-120001389
Kishida, D., Okuda, Y., Onishi, M., Takebayashi, M., Matoba, K., Jouyama, K., et al. (2011). Successful tocilizumab treatment in a patient with adult-onset Still’s disease complicated by chronic active hepatitis B and amyloid A amyloidosis. Modern Rheumatology, 21, 215-218. 10.1007/s10165-010-0365-8
Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., et al. (2018). Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antiviral Therapy, 23, 617-622. 10.3851/IMP3243
Lambertini, M., Toss, A., Passaro, A., Criscitiello, C., Cremolini, C., Cardone, C., et al. (2020). Cancer care during the spread of coronavirus disease 2019 (COVID-19) in Italy: Young oncologists’ perspective. ESMO Open, 5, 1-4. oi:10.1136/esmoopen-2020-000759.
Leszczynska, A., Molins, B., Fernández, E., Adán, A., & Ortiz-Perez, S. (2019). Cytokine production in thyroid eye disease: in vitro effects of dexamethasone and IL-6 blockade with tocilizumab. Graefes’s Archive for Clinical and Experimental Ophthalmology, 257, 2307-2314. 10.1007/s00417-019-04419-7
Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6, 1-4. 10.1038/s41421-020-0156-0
Makinson, A., Martelli, N., Peyriere, H., Turriere, C., Moing, V., & Reynes, J. (2007). Profound neutropenia resulting from interaction between antiretroviral therapy and vinblastine in a patient with HIV‐associated Hodgkin's disease. European Journal of Haematology, 78, 358-360. 10.1111/j.1600-0609.2007.00827.x
Malla, S., Niraula, N. P., Singh, B., Liou, K., & Sohng, J. K. (2010). Limitations in doxorubicin production from Streptomyces peucetius. Microbiology Research, 165, 427-435. https://doi.org/10.1016/j.micres.2009.11.006
Manikandan, P., & Nagini, S. (2018). Cytochrome P450 structure, function and clinical significance: a review. Current Drug Targets. 19, 38-54. 10.2174/1389450118666170125144557
Martin, J., & Fay, M. (2001). Cytochrome P450 drug interactions: are they clinically relevant?. Australian Prescriber, 24, 10-12. https://www.aafp.org/afp/2007/0801/p391.html
McMullan, B. J., & Mostaghim, M. (2015). Prescribing azithromycin. Australian Prescriber, 38, 87-90. 10.18773/austprescr.2015.030
Meriglier, E., Rivoisy, C., Hessamfar, M., Bernard, N., Aureau, I., Lapoirie, J., et al. (2021). Safety of hydroxychloroquine and darunavir or lopinavir in COVID-19 infection. Journal of Antimicrobial Chemotherapy, 76(2), 482-486. https://doi.org/10.1093/jac/dkaa441
Nojomi, M., Yassin, Z., Keyvani, H., Makiani, M. J., Roham, M., Laali, A., et al. (2020). Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infectious Diseases, 20(1), 1-10. 10.1186/s12879-020-05698-w
Olin, J. L., Klibanov, O., Chan, A., & Spooner, L. M. Managing pharmacotherapy in people living with HIV and concomitant malignancy. Annals Pharmacotherapy, 53, 812-832. 10.1177/1060028019833038
Page, M., & Taylor, S. (2018). Antiretroviral pharmacology. Medicine, 46(5), 287-292. https://doi.org/10.1016/j.mpmed.2013.05.004
PubChem. Compound Summary. Vincristine, https://pubchem.ncbi.nlm.nih.gov/compound/Vincristine.
PubChem. Compound Summary. Procarbazine, https://pubchem.ncbi.nlm.nih.gov/compound/Procarbazine
PubChem. Compound Summary. Prednisone, https://pubchem.ncbi.nlm.nih.gov/compound/Prednisone.
Qu, X., Sheng, J., Shen, L., Su, J., Xu, Y., Xie, Q., Wu, Y., Zhang, X., & Sun, L. (2017). Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One, 12, 1-12. 10.1371/journal.pone.0173712
Peter, W., Mafham, M., Jennifer, L. B., Linsell, L., Staplin, N., & Emberson, J. (2020). Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RE-COVERY): a randomized, controlled, open-label, platform trial, 396, 1345-1352, The Lancet. https://doi.org/10.1016/S0140-6736(20)32013-4
Rezaee, H., Pourkarim, F., Pourtaghi‐Anvarian, S., Entezari‐Maleki, T., Asvadi‐Kermani, T., & Nouri‐Vaskeh, M. (2021). Drug‐drug interactions with candidate medications used for COVID‐19 treatment: An overview. Pharmacology Research & Perspectives, 9(1), 1-18.
Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., Mcginn, T., Davidson, K. W., et al. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Journal of the American Medical Association, 323, 2052-2059. 10.1001/jama.2020.6775
Schrezenmeier, E., & Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 16, 1-12. 10.1038/s41584-020-0372-x
Sessa, C., Gianni, L., Garassino, M., & Van Halteren, H. (2012). Handbook of clinical pharmacology of anti-cancer agents. Viganello-Lugano: ESMO. https://oncologypro.esmo.org/education-library/esmo-handbooks/clinical-pharmacology-of-anti-cancer-agents
Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., et al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11, 1-14. 10.1038/s41467-019-13940-6
Slimano, F., et al. (2020). Cancer, immune suppression and Coronavirus Disease-19 (COVID-19): Need to manage drug safety (French Society for Oncology Pharmacy [SFPO] guidelines). Cancer Treatment Reviews, 88, 1-18. 10.1016/j.ctrv.2020.102063
Srivastava, V., & Lee, H. (2015). Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. European Journal of Pharmacology. 762, 472-486. 10.1016/j.ejphar.2015.04.048
Ueda, M., Martins, R., Hendrie, P. C., McDonnell, T., Crews, J. R., & Wong, T. L. (2020). Managing cancer care during the COVID-19 pandemic: agility and collaboration toward a common goal. Journal of the National Comprehensive Cancer Network, 18(4), 366-369.
Umezawa, H. (2012). Bleomycin. In: Mechanism of action of antimicrobial and antitumor agents. New York, NY: Springer Science & Business Media. https://www.springer.com/gp/book/9783642463068
Vardanyan, R., & Hruby, V. (2006). Antineoplastics. In: Synthesis of essential drugs (pp 389-418). Elsevier. https://www.elsevier.com/books/synthesis-of-essential-drugs/vardanyan/978-0-444-52166-8
Wang, B., Li, R., Lu, Z., & Huang, Y. (2020). Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging, 12, 6049-6057. 10.18632/aging.103000
Wassner, C., Bradley, N., & Lee, Y. (2020). A Review and clinical understanding of tenofovir: tenofovir disoproxil fumarate versus tenofovir alafenamide. Journal of the International Association of Providers of AIDS Care, 19, 1-10. 10.1177/2325958220919231
Woods, D., & Turchi, J. J. (2013). Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biology & Therapy, 14, 379-389. 10.4161/cbt.23761
World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19, https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 8, 420-422. 10.1016/S2213-2600(20)30076-X
Zhang, Y. B., & Gui, J. F. (2012). Molecular regulation of interferon antiviral response in fish. Developmental and Comparative Immunology. 38, 193-202. 10.1016/j.dci.2012.06.003
Zhou, S-F. (2008). Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 38, 802-832. 10.1080/00498250701867889
Zhou, S-F. (2008). Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Current Drug Metabolism, 9, 310-322. 10.2174/138920008784220664
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Maria Isabela Ferreira de Araújo ; Raquel Bezerra da Silva ; Paula Perazzo de Souza Barbosa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.