Nanocarriers applied to the treatment of breast cancer
DOI:
https://doi.org/10.33448/rsd-v10i10.18966Keywords:
Nanoparticle; Treatment; Breast neoplasms.Abstract
Objective: Evaluate the implications of using nanocarriers in the treatment of breast cancer. Methods: Literature review based in guidelines contained in Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA), using these databases: PubMed and Biblioteca Virtual em Saúde, using the key words: “nanoparticles” AND “treatment” AND “breast cancer”. Nineteen articles, written in English, that met the inclusion criteria, were selected. Results: Given the findings on the selected studies, it was perceived a low toxicity on healthy cells and the capacity to direct nanoparticles to the tumor site. Conclusion: The present study allowed the comprehension of the efficacy of de drugs carried on the different nanoparticles, intending to reduce the tumoral cells and minimize the toxicity, with specific liberation of drugs on tumor site.
References
Abazari, R., Mahjoub, A. R., Ataei, F., Morsali, A., Carpenter-Warren, C. L., Mehdizadeh, K., & Slawin, A. M. (2018). Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg Chem, 57(21), 13364-13379.
Akbarzadeh, I., Shayan, M., Bourbour, M., Moghtaderi, M., Noorbazargan, H., Eshrati Yeganeh, F., ... & Tahriri, M. (2021). Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology, 10(3), 173-200.
Azandaryani, A. H., Kashanian, S., & Derakhshandeh, K. (2017). Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res, 34(12), 2798-2808.
Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett, 190, 64-83.
Draz, M. S., Fang, B. A., Zhang, P., Hu, Z., Gu, S., Weng, K. C., ... & Chen, F. F. (2014). Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 4(9), 872-892.
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.
INSTITUTO NACIONAL DO CÂNCER. Câncer de mama, 2021. Disponível em: https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama. Acesso em: 29 abr. 2021.
Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clin. Breast cancer, 8(3), 224-233.
Kobylinska, L., Patereha, I., Finiuk, N., Mitina, N., Riabtseva, A., Kotsyumbas, I., ... & Vari, S. G. (2018). Comb-like PEG-containing polymeric composition as low toxic drug nanocarrier. Cancer nanotechnol, 9(1), 1-13.
Kumar, P., Paknikar, K. M., & Gajbhiye, V. (2018). A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloid Surface B, 171, 437-444.
Kumari, P., Muddineti, O. S., Rompicharla, S. V. K., Ghanta, P., BBN, A. K., Ghosh, B., & Biswas, S. (2017). Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv, 24(1), 209-223.
Lamb, R., Bonuccelli, G., Ozsvári, B., Peiris-Pagès, M., Fiorillo, M., Smith, D. L., Bevilacqua G., Mazzanti, C. M., McDonnel, L. A., Naccarato, A. G., Chiu, M., Wynne, L., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2015). Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget, 6(31), 30453-71.
Li, Y., Li, X., Lu, Y., Chaurasiya, B., Mi, G., Shi, D., Chen, D., Webster, T. J., Tu, J., & Shen, Y. (2020). Co-delivery of Poria cocos extract and doxorubicin as an ‘all-in-one’nanocarrier to combat breast cancer multidrug resistance during chemotherapy. NBM, 23, 938-941.
Lu, J., Steeg, P. S., Price, J. E., Krishnamurthy, S., Mani, S. A., Reuben, J., Cristofanilli, M., Dontu, G., Bidaut, L., Valero, V., N. Hortobagyi, G., & Yu, D. (2009). Breast cancer metastasis: challenges and opportunities. Cancer Res, 69(12), 4951-4953
Ma, H., Yang, X., Ke, J., Wang, C., Peng, L., Hu, F., & Yuan, H. (2020). Smart assembled human serum albumin nanocarrier enhanced breast cancer treatment and antitumor immunity by chemo-photothermal therapy. ACS Biomater-Sci Eng, 6(5), 3217-3229.
Maji, R., Dey, N. S., Satapathy, B. S., Mukherjee, B., & Mondal, S. (2014). Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine, 9, 3107-3118.
Meng, T., Lu, B., Shao, S., Yuan, M., Liu, X., Yuan, H., Huang, X., & Hu, F. (2017). Sequential therapy with redox-responsive glucolipid nanocarrier separately delivering siRNA and doxorubicin to overcome multidrug resistance. Int J Pharm, 534(1-2), 368-377.
Meng, T., Qiu, G., Hong, Y., Yuan, M., Lu, B., Wu, J., Yuan, H., & Hu, F. (2019). Effect of chitosan based glycolipid-like nanocarrier in prevention of developing acquired drug resistance in tri-cycle treatment of breast cancer. Int J Pharm, 555, 303-313.
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Syst Rev, 5(1), 1-10.
Padayachee, J., Daniels, A., Balgobind, A., Ariatti, M., & Singh, M. (2020). HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine, 15(14), 1437-1452.
Panda, J., Satapathy, B. S., Mandal, B., Sen, R., Mukherjee, B., Sarkar, R., & Tudu, B. (2021). Anticancer potential of docetaxel-loaded cobalt ferrite nanocarrier: an in vitro study on MCF-7 and MDA-MB-231 cell lines. J Microencapsul, 38(1), 36-46.
Pei, X., Zhu, Z., Gan, Z., Chen, J., Zhang, X., Cheng, X., Wan, Q., & Wang, J. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep, 10(1), 1-15.
Pourjavadi, A., Amin, S. S., & Hosseini, S. H. (2018). Delivery of hydrophobic anticancer drugs by hydrophobically modified alginate based magnetic nanocarrier. Ind Eng Chem Res, 57(3), 822-832.
Rahimi, M., Karimian, R., Noruzi, E. B., Ganbarov, K., Zarei, M., Kamounah, F. S., Yousefi, B., Bastami, M., Yousefi M., & Kafil, H. S. (2019). Needle-shaped amphoteric calix [4] arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. Int J Nanomedicine, 14, 2619–2636.
Shaarani, S., Hamid, S. S., & Kaus, N. H. M. (2017). The Influence of pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacogn Res, 9(1), 12-20.
Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Fedewa, S., Lin, C., Leach C., Cannady, R., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A., & Ward, E. (2012). Cancer treatment and survivorship statistics, 2012. CA: Cancer J Clin, 62(4), 220-241.
Vinothini, K., Rajendran, N. K., Ramu, A., Elumalai, N., & Rajan, M. Internat. J. Pharm.(2019). Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother, 110, 906-917.
Wolrd Health Organization (2021). Breast cancer 2020. https://www.who.int/news-room/fact-sheets/detail/breast-cancer#:~:text=The%20objective%20of%20the%20WHO,globally%20between%202020%20and%202040.
Yu, T., Li, Y., Gu, X., & Li, Q. (2020). Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a PH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol, 11, 1370.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Marina Galdino da Rocha Pitta; Rhuann Pontes dos Santos Silva; Guilherme Victor Santos Alves; Isabella Carla Barbosa Lima Angelo; Joana Martins de Souza; João Ricardo Caldas Pinheiro Pessôa; Jordy Silva de Carvalho; Maria Keyllane Vasconcelos de Miranda; Manuela Barbosa Rodrigues de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.