Nanocarreadores aplicados ao tratamento do câncer de mama
DOI:
https://doi.org/10.33448/rsd-v10i10.18966Palavras-chave:
Tratamento; Nanopartículas; Neoplasias de mama.Resumo
Objetivo: Avaliar as implicações da utilização dos nanocarreadores no tratamento do câncer de mama. Métodos: Revisão da literatura com base nas diretrizes contidas no Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA), utilizando as bases de dados: PubMed e Biblioteca Virtual em Saúde com os termos de busca: “nanopartículas” E “tratamento” E “câncer de mama”. Foram selecionados 19 artigos, escritos em inglês, que preencheram os critérios de inclusão. Resultados: Diante dos achados nos estudos selecionados, percebeu-se que os nanocarreadores apresentam baixa toxicidade a células saudáveis e as nanopartículas podem ser direcionadas para o local específico do tumor. Conclusão: este estudo permitiu compreender a eficácia das drogas utilizadas nos diferentes tipos de nanocarreadores para a redução das células tumorais com minimização da toxicidade e liberação do medicamento na região específica do tumor.
Referências
Abazari, R., Mahjoub, A. R., Ataei, F., Morsali, A., Carpenter-Warren, C. L., Mehdizadeh, K., & Slawin, A. M. (2018). Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg Chem, 57(21), 13364-13379.
Akbarzadeh, I., Shayan, M., Bourbour, M., Moghtaderi, M., Noorbazargan, H., Eshrati Yeganeh, F., ... & Tahriri, M. (2021). Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology, 10(3), 173-200.
Azandaryani, A. H., Kashanian, S., & Derakhshandeh, K. (2017). Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res, 34(12), 2798-2808.
Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett, 190, 64-83.
Draz, M. S., Fang, B. A., Zhang, P., Hu, Z., Gu, S., Weng, K. C., ... & Chen, F. F. (2014). Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 4(9), 872-892.
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.
INSTITUTO NACIONAL DO CÂNCER. Câncer de mama, 2021. Disponível em: https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama. Acesso em: 29 abr. 2021.
Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clin. Breast cancer, 8(3), 224-233.
Kobylinska, L., Patereha, I., Finiuk, N., Mitina, N., Riabtseva, A., Kotsyumbas, I., ... & Vari, S. G. (2018). Comb-like PEG-containing polymeric composition as low toxic drug nanocarrier. Cancer nanotechnol, 9(1), 1-13.
Kumar, P., Paknikar, K. M., & Gajbhiye, V. (2018). A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloid Surface B, 171, 437-444.
Kumari, P., Muddineti, O. S., Rompicharla, S. V. K., Ghanta, P., BBN, A. K., Ghosh, B., & Biswas, S. (2017). Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv, 24(1), 209-223.
Lamb, R., Bonuccelli, G., Ozsvári, B., Peiris-Pagès, M., Fiorillo, M., Smith, D. L., Bevilacqua G., Mazzanti, C. M., McDonnel, L. A., Naccarato, A. G., Chiu, M., Wynne, L., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2015). Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget, 6(31), 30453-71.
Li, Y., Li, X., Lu, Y., Chaurasiya, B., Mi, G., Shi, D., Chen, D., Webster, T. J., Tu, J., & Shen, Y. (2020). Co-delivery of Poria cocos extract and doxorubicin as an ‘all-in-one’nanocarrier to combat breast cancer multidrug resistance during chemotherapy. NBM, 23, 938-941.
Lu, J., Steeg, P. S., Price, J. E., Krishnamurthy, S., Mani, S. A., Reuben, J., Cristofanilli, M., Dontu, G., Bidaut, L., Valero, V., N. Hortobagyi, G., & Yu, D. (2009). Breast cancer metastasis: challenges and opportunities. Cancer Res, 69(12), 4951-4953
Ma, H., Yang, X., Ke, J., Wang, C., Peng, L., Hu, F., & Yuan, H. (2020). Smart assembled human serum albumin nanocarrier enhanced breast cancer treatment and antitumor immunity by chemo-photothermal therapy. ACS Biomater-Sci Eng, 6(5), 3217-3229.
Maji, R., Dey, N. S., Satapathy, B. S., Mukherjee, B., & Mondal, S. (2014). Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine, 9, 3107-3118.
Meng, T., Lu, B., Shao, S., Yuan, M., Liu, X., Yuan, H., Huang, X., & Hu, F. (2017). Sequential therapy with redox-responsive glucolipid nanocarrier separately delivering siRNA and doxorubicin to overcome multidrug resistance. Int J Pharm, 534(1-2), 368-377.
Meng, T., Qiu, G., Hong, Y., Yuan, M., Lu, B., Wu, J., Yuan, H., & Hu, F. (2019). Effect of chitosan based glycolipid-like nanocarrier in prevention of developing acquired drug resistance in tri-cycle treatment of breast cancer. Int J Pharm, 555, 303-313.
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Syst Rev, 5(1), 1-10.
Padayachee, J., Daniels, A., Balgobind, A., Ariatti, M., & Singh, M. (2020). HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine, 15(14), 1437-1452.
Panda, J., Satapathy, B. S., Mandal, B., Sen, R., Mukherjee, B., Sarkar, R., & Tudu, B. (2021). Anticancer potential of docetaxel-loaded cobalt ferrite nanocarrier: an in vitro study on MCF-7 and MDA-MB-231 cell lines. J Microencapsul, 38(1), 36-46.
Pei, X., Zhu, Z., Gan, Z., Chen, J., Zhang, X., Cheng, X., Wan, Q., & Wang, J. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep, 10(1), 1-15.
Pourjavadi, A., Amin, S. S., & Hosseini, S. H. (2018). Delivery of hydrophobic anticancer drugs by hydrophobically modified alginate based magnetic nanocarrier. Ind Eng Chem Res, 57(3), 822-832.
Rahimi, M., Karimian, R., Noruzi, E. B., Ganbarov, K., Zarei, M., Kamounah, F. S., Yousefi, B., Bastami, M., Yousefi M., & Kafil, H. S. (2019). Needle-shaped amphoteric calix [4] arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. Int J Nanomedicine, 14, 2619–2636.
Shaarani, S., Hamid, S. S., & Kaus, N. H. M. (2017). The Influence of pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacogn Res, 9(1), 12-20.
Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Fedewa, S., Lin, C., Leach C., Cannady, R., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A., & Ward, E. (2012). Cancer treatment and survivorship statistics, 2012. CA: Cancer J Clin, 62(4), 220-241.
Vinothini, K., Rajendran, N. K., Ramu, A., Elumalai, N., & Rajan, M. Internat. J. Pharm.(2019). Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother, 110, 906-917.
Wolrd Health Organization (2021). Breast cancer 2020. https://www.who.int/news-room/fact-sheets/detail/breast-cancer#:~:text=The%20objective%20of%20the%20WHO,globally%20between%202020%20and%202040.
Yu, T., Li, Y., Gu, X., & Li, Q. (2020). Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a PH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol, 11, 1370.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Marina Galdino da Rocha Pitta; Rhuann Pontes dos Santos Silva; Guilherme Victor Santos Alves; Isabella Carla Barbosa Lima Angelo; Joana Martins de Souza; João Ricardo Caldas Pinheiro Pessôa; Jordy Silva de Carvalho; Maria Keyllane Vasconcelos de Miranda; Manuela Barbosa Rodrigues de Souza
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.