Production and characterization of cellulases and hemicellulases from a consortium between Pleurotus ostreatus and Aspergillus niger cultured in agro-industrial wastes
DOI:
https://doi.org/10.33448/rsd-v10i10.19020Keywords:
Solid state fermentation; Ascomycete; Basidiomycete; (Hemi) Cellulolytic enzymes; Prospection.Abstract
The enzyme biosynthesis using agricultural wastes by solid state fermentation (SSF) and the study of their physicochemical properties are meaningful approaches to improve the biomass hydrolysis. Among them, β-glucosidases and β-xylosidases are key enzymes at the lignocellulose depolymerization, which act in the cleavage of oligosaccharides in monosaccharides. In this study, the production of hemicellulases and cellulases by Pleurotus ostreatus and Aspergillus niger monocultures or in consortium was investigated, using raw sugarcane bagasse (SB) and wheat bran (WB) as substrates. The highest enzymatic activities were observed in the crude extract produced by P. ostreatus PLO6 and A. niger SCBM4 consortium with 98.5, 62.9, 3.8, 12.4, 13.3 and 20.2 U/g for β-glucosidase (β-glu), β-xylosidase (Bxyl), filter paper cellulase (FPase), xylanase (Xyl), exoglucanase (Exgl) and endoglucanase (Engl), respectively. The pH and temperature effects on β-glu and β-xyl were characterized. Optimal activities were obtained at pH 4.0 and 45 °C for β-glu and 3.5 and 55 °C for β-xyl. Both enzymes were stable at acid pH and presented thermostability. The results indicated that the enzymatic cocktail demonstrated potential characteristics for future applications in saccharifications. The use of sugarcane bagasse and wheat bran for microbial growth contributed to aggregate value to these byproducts.
References
Almeida, L. E. S., Ribeiro, G. C. A., & de Assis, S. A. (2021). β-Glucosidase produced by Moniliophthora perniciosa: Characterization and application in the hydrolysis of sugarcane bagasse. Biotechnology and Applied Biochemistry, 1– 11.
Araújo, N. L., Avelino, K. V., Halabura, M. I. W., Marim, R. A., Kassem, A. S. S., Santana, T. T., Colauto, G. A. L., Colauto, N. B., & Valle, J. S. do. (2021). Production of mycelial biomass and lignocellulolytic enzymes of Pleurotus spp. in liquid culture medium. Research, Society and Development, 10(1), e6810111406.
Arruda, A. G., Evangelista, I. V., Menezes, L. S. De, Fischer, J., Cardoso, V. L., Santos, L. D., & Guidini, C. Z. (2021). Production of enzymatic complex from agro-industrial biomass and its application in combustible ethanol. Research, Society and Development, 10(6), e40410613705.
Baffi, M. A., Tobal, T., Lago, J. H. G., Leite, R. S., Boscolo, M., Gomes, E., & Da Silva, R. (2011). A Novel β‐Glucosidase from Sporidiobolus pararoseus: Characterization and Application in Winemaking. Journal of Food Science, 76(7), C997-C1002.
Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., & da Silva, S. S. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 7, 989572.
Da Luz, J. M. R., Nunes, M. D., Paes, S. A., Torres, D. P., Silva, M. D. C. S. D., & Kasuya, M. C. M. (2012). Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agro-industrial wastes. Brazilian Journal of Microbiology, 43(4), 1508-1515.
Dias, L. M., dos Santos, B. V., Albuquerque, C. J. B., Baeta, B. E. L., Pasquini, D., Baffi, M. A. (2017). Biomass sorghum as a novel substrate in solid‐state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Journal of Applied Microbiology, 124(3), 708-718.
Dos Santos, B. V., Rodrigues, P. D. O., Albuquerque, C. J. B., Pasquini, D., & Baffi, M. A. (2019). Use of an (hemi) cellulolytic enzymatic extract produced by Aspergilli species consortium in the saccharification of biomass sorghum. Applied Biochemistry and Biotechnology, 189(1), 37-48.
Dos Santos, B. S. L., Gomes, A. F. S., Franciscon, E. G., Oliveira, J. M. D., & Baffi, M. A. (2015). Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Brazilian Journal of Microbiology, 46(3), 903-910.
Ghose, T. K. (1987). Measurement of cellulase activities. Pure Applied Chemistry, 59, 695–702.
Gomes, A. F. S., dos Santos, B. S. L., Franciscon, E. G., & Baffi, M. A. (2016). Substract and temperature effect on xylanase production by Aspergillus fumigatus using low cost agricultural wastes. Bioscience Journal, 32, 915-921.
Infanzón-Rodríguez, M. I., Ragazzo-Sánchez, J. A., del Moral, S. et al. (2020). Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse. Biotechnology Letters, 42, 2271–2283.
Infanzón-Rodríguez, M. I., Ragazzo-Sánchez, J. A., Del Moral, S., Calderón-Santoyo, M., & Aguilar-Uscanga, M. G. (2021). Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by aspergillus niger ITV02 under liquid state fermentation. Biotechnology and Applied Biochemistry, https://doi.org/10.1002/bab.2097.
Khalil, M. I., Hoque, M. M., Basunia, M. A., Alam, N., & Khan M. A. (2011). Production of cellulase by Pleurotus ostreatus and Pleurotus sajor-caju in solid state fermentation of lignocellulosic biomass. Turkish Journal of Agriculture and Forestry, 35(4), 333-341.
Khanahmadi, M., Arezi, I., Amiri, M., & Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid state fermentation in flask and tray bioreactor, Biocatalysis Agricultural Biotechnology, 13, 272-282.
Kurt, S. & Buyukalaca, S. (2010). Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresource Technology, 101(9), 3164-3169.
Lamounier, K. F. R., Rodrigues, P. O., Pasquini, D., & Baffi, M. A. (2020). Ethanol production and other bioproducts by Galactomyces geotrichum from sugarcane bagasse hydrolysate. Current Microbiology, 77,738–745.
Lin, H., Wang, B., Zhuang, R., Zhou, Q., & Zhao, Y. (2011). Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresource Technology, 102(22), 10569-10576.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.
&
Mustafa, A. M., Poulsen, T. G., & Sheng, K. (2016). Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy, 180, 661-671.
Nelson, D. L., & Cox, M. M. (2012). Lehninger Principles of Biochemistry, (6th ed.), W.H. Freeman.
Raj, K. and Krishnan, C. (2019). Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production, Industrial Crops and Products, 131, 32–40.
Rani, V., Mohanram, S., Tiwari, R., Nain, L., & Arora, A. (2014). Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. Journal of Bioprocessing Biotechniques, 5(1), 197-205.
Rodrigues, P. D. O., Pereira, J. D. C., Santos, D. Q., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-)cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109, 173-181.
Rodrigues, P. D. O., Gurgel, L. V. A., Pasquini, D., Badotti, F., Goés-Neto, A., & Baffi, M. A. (2020). Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 145, 2683-2693.
Rodrigues, P. D. O., Barreto, E. da S., Brandão, R. L., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2021). On-site produced enzyme cocktails for saccharification and ethanol production from sugarcane bagasse fractionated by hydrothermal and alkaline pretreatments. Waste and Biomass Valorization, https://doi.org/10.1007/s12649-021-01499-7.
Shashirekha, M. N., Rajarathnam, S., & Bano, Z. (2005). Effects of supplementing rice straw growth substrate with cotton seeds on the analytical characteristics of the mushroom, Pleurotus florida (Block and Tsao). Food Chemistry, 92(2), 255-259.
Singh, A., Jasso, R. M. R., Gonzalez-Gloria, K. D., Rosales, M., Cerda, R. B., Aguilar, C. N., Singhania, R. R., & Ruiz, H. A. (2019). The enzyme biorefinery platform for advanced biofuels production. Bioresource Technology Reports, 7, 100257.
Sowmya, H. V., Ramalingappa, B., Nayanashree, G., Thippeswamy, B., & Krishnappa, M. (2015). Polyethylene degradation by fungal consortium. International Journal of Environmental Research, 9(3), 823-830.
Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68-76.
Verma, N., Kumar, V., & Bansal, M. C. (2020). Valorization of waste biomass in fermentative production of cellulases: a review. Waste and Biomass Valorization, 12(2):613-640.
Zain, M. M., Mohammad, A. W., Harun, S., Fauzi, N. A., & Hairom, N. H. H. (2018). Synergistic effects on process parameters to enhance enzymatic hydrolysis of alkaline oil palm fronds, Industrial Crops and Products, 122, 617–626.
Zamora, H. D. Z., Silva, T. A. L., Varão, L. H. R. Baffi, M. A., & Pasquini, D. (2021). Simultaneous production of cellulases, hemicellulases, and reducing sugars by Pleurotus ostreatus growth in one-pot solid state fermentation using Alstroemeria sp. waste. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-021-01723-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Igor Magno Nicurgo Borges Rosa Martins; Luanna Stefanny Vieira Oliveira Gomes; Daniel Pasquini; Milla Alves Baffi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.