Producción y caracterización de celulasas e hemicelulasas por un consórcio entre Pleurotus ostreatus y Aspergillus niger cultivados en resíduos agroindustriales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19020

Palabras clave:

Fermentación en estado sólido; Ascomiceto; Basidiomiceto; Enzimas (Hemi) celulolíticas; Prospección.

Resumen

La biosíntesis de enzimas utilizando desechos agrícolas por fermentación en estado sólido (SSF) y el estudio de sus propiedades fisicoquímicas son enfoques significativos para mejorar la hidrólisis de la biomasa. Entre ellas, las β-glucosidasas y las β-xilosidasas son enzimas clave en la despolimerización de la lignocelulosa, que actúan en la escisión de oligosacáridos en monosacáridos. En este estudio se investigó la producción de hemicelulasas y celulasas por monocultivos de Pleurotus ostreatus y Aspergillus niger o en consorcio, utilizando como sustratos bagazo de caña de azúcar crudo (SB) y salvado de trigo (WB). Las mayores actividades enzimáticas se observaron en el extracto crudo producido por el consorcio P. ostreatus PLO6 y A. niger SCBM4 con 98.5, 62.9, 3.8, 12.4, 13.3 y 20.2 U / g para β-glucosidasa (β-glu), β-xilosidasa (β-xyl), papel de filtro celulasa (FPasa), xilanasa (Xyl), exoglucanasa (Exgl) y endoglucanasa (Engl), respectivamente. Se caracterizaron los efectos del pH y la temperatura sobre β-gl y β-xyl. Las actividades óptimas se obtuvieron a pH 4.0 y 45 °C para β-glu y 3.5 y 55 °C para β-xyl. Ambas enzimas fueron estables a pH ácido y presentaron termoestabilidad. Los resultados indicaron que el cóctel enzimático demostró características potenciales para futuras aplicaciones en sacarificaciones. El uso de bagazo de caña de azúcar y salvado de trigo para el crecimiento microbiano contribuyó al valor agregado de estos subproductos.

Citas

Almeida, L. E. S., Ribeiro, G. C. A., & de Assis, S. A. (2021). β-Glucosidase produced by Moniliophthora perniciosa: Characterization and application in the hydrolysis of sugarcane bagasse. Biotechnology and Applied Biochemistry, 1– 11.

Araújo, N. L., Avelino, K. V., Halabura, M. I. W., Marim, R. A., Kassem, A. S. S., Santana, T. T., Colauto, G. A. L., Colauto, N. B., & Valle, J. S. do. (2021). Production of mycelial biomass and lignocellulolytic enzymes of Pleurotus spp. in liquid culture medium. Research, Society and Development, 10(1), e6810111406.

Arruda, A. G., Evangelista, I. V., Menezes, L. S. De, Fischer, J., Cardoso, V. L., Santos, L. D., & Guidini, C. Z. (2021). Production of enzymatic complex from agro-industrial biomass and its application in combustible ethanol. Research, Society and Development, 10(6), e40410613705.

Baffi, M. A., Tobal, T., Lago, J. H. G., Leite, R. S., Boscolo, M., Gomes, E., & Da Silva, R. (2011). A Novel β‐Glucosidase from Sporidiobolus pararoseus: Characterization and Application in Winemaking. Journal of Food Science, 76(7), C997-C1002.

Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., & da Silva, S. S. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 7, 989572.

Da Luz, J. M. R., Nunes, M. D., Paes, S. A., Torres, D. P., Silva, M. D. C. S. D., & Kasuya, M. C. M. (2012). Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agro-industrial wastes. Brazilian Journal of Microbiology, 43(4), 1508-1515.

Dias, L. M., dos Santos, B. V., Albuquerque, C. J. B., Baeta, B. E. L., Pasquini, D., Baffi, M. A. (2017). Biomass sorghum as a novel substrate in solid‐state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Journal of Applied Microbiology, 124(3), 708-718.

Dos Santos, B. V., Rodrigues, P. D. O., Albuquerque, C. J. B., Pasquini, D., & Baffi, M. A. (2019). Use of an (hemi) cellulolytic enzymatic extract produced by Aspergilli species consortium in the saccharification of biomass sorghum. Applied Biochemistry and Biotechnology, 189(1), 37-48.

Dos Santos, B. S. L., Gomes, A. F. S., Franciscon, E. G., Oliveira, J. M. D., & Baffi, M. A. (2015). Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Brazilian Journal of Microbiology, 46(3), 903-910.

Ghose, T. K. (1987). Measurement of cellulase activities. Pure Applied Chemistry, 59, 695–702.

Gomes, A. F. S., dos Santos, B. S. L., Franciscon, E. G., & Baffi, M. A. (2016). Substract and temperature effect on xylanase production by Aspergillus fumigatus using low cost agricultural wastes. Bioscience Journal, 32, 915-921.

Infanzón-Rodríguez, M. I., Ragazzo-Sánchez, J. A., del Moral, S. et al. (2020). Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse. Biotechnology Letters, 42, 2271–2283.

Infanzón-Rodríguez, M. I., Ragazzo-Sánchez, J. A., Del Moral, S., Calderón-Santoyo, M., & Aguilar-Uscanga, M. G. (2021). Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by aspergillus niger ITV02 under liquid state fermentation. Biotechnology and Applied Biochemistry, https://doi.org/10.1002/bab.2097.

Khalil, M. I., Hoque, M. M., Basunia, M. A., Alam, N., & Khan M. A. (2011). Production of cellulase by Pleurotus ostreatus and Pleurotus sajor-caju in solid state fermentation of lignocellulosic biomass. Turkish Journal of Agriculture and Forestry, 35(4), 333-341.

Khanahmadi, M., Arezi, I., Amiri, M., & Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid state fermentation in flask and tray bioreactor, Biocatalysis Agricultural Biotechnology, 13, 272-282.

Kurt, S. & Buyukalaca, S. (2010). Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresource Technology, 101(9), 3164-3169.

Lamounier, K. F. R., Rodrigues, P. O., Pasquini, D., & Baffi, M. A. (2020). Ethanol production and other bioproducts by Galactomyces geotrichum from sugarcane bagasse hydrolysate. Current Microbiology, 77,738–745.

Lin, H., Wang, B., Zhuang, R., Zhou, Q., & Zhao, Y. (2011). Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresource Technology, 102(22), 10569-10576.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.

&

Mustafa, A. M., Poulsen, T. G., & Sheng, K. (2016). Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy, 180, 661-671.

Nelson, D. L., & Cox, M. M. (2012). Lehninger Principles of Biochemistry, (6th ed.), W.H. Freeman.

Raj, K. and Krishnan, C. (2019). Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production, Industrial Crops and Products, 131, 32–40.

Rani, V., Mohanram, S., Tiwari, R., Nain, L., & Arora, A. (2014). Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. Journal of Bioprocessing Biotechniques, 5(1), 197-205.

Rodrigues, P. D. O., Pereira, J. D. C., Santos, D. Q., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-)cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109, 173-181.

Rodrigues, P. D. O., Gurgel, L. V. A., Pasquini, D., Badotti, F., Goés-Neto, A., & Baffi, M. A. (2020). Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 145, 2683-2693.

Rodrigues, P. D. O., Barreto, E. da S., Brandão, R. L., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2021). On-site produced enzyme cocktails for saccharification and ethanol production from sugarcane bagasse fractionated by hydrothermal and alkaline pretreatments. Waste and Biomass Valorization, https://doi.org/10.1007/s12649-021-01499-7.

Shashirekha, M. N., Rajarathnam, S., & Bano, Z. (2005). Effects of supplementing rice straw growth substrate with cotton seeds on the analytical characteristics of the mushroom, Pleurotus florida (Block and Tsao). Food Chemistry, 92(2), 255-259.

Singh, A., Jasso, R. M. R., Gonzalez-Gloria, K. D., Rosales, M., Cerda, R. B., Aguilar, C. N., Singhania, R. R., & Ruiz, H. A. (2019). The enzyme biorefinery platform for advanced biofuels production. Bioresource Technology Reports, 7, 100257.

Sowmya, H. V., Ramalingappa, B., Nayanashree, G., Thippeswamy, B., & Krishnappa, M. (2015). Polyethylene degradation by fungal consortium. International Journal of Environmental Research, 9(3), 823-830.

Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68-76.

Verma, N., Kumar, V., & Bansal, M. C. (2020). Valorization of waste biomass in fermentative production of cellulases: a review. Waste and Biomass Valorization, 12(2):613-640.

Zain, M. M., Mohammad, A. W., Harun, S., Fauzi, N. A., & Hairom, N. H. H. (2018). Synergistic effects on process parameters to enhance enzymatic hydrolysis of alkaline oil palm fronds, Industrial Crops and Products, 122, 617–626.

Zamora, H. D. Z., Silva, T. A. L., Varão, L. H. R. Baffi, M. A., & Pasquini, D. (2021). Simultaneous production of cellulases, hemicellulases, and reducing sugars by Pleurotus ostreatus growth in one-pot solid state fermentation using Alstroemeria sp. waste. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-021-01723-3.

Descargas

Publicado

14/08/2021

Cómo citar

MARTINS, I. M. N. B. R. .; GOMES, L. S. V. O. .; PASQUINI, D. .; BAFFI, M. A. . Producción y caracterización de celulasas e hemicelulasas por un consórcio entre Pleurotus ostreatus y Aspergillus niger cultivados en resíduos agroindustriales. Research, Society and Development, [S. l.], v. 10, n. 10, p. e396101019020, 2021. DOI: 10.33448/rsd-v10i10.19020. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19020. Acesso em: 29 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas