Plasma TNF-alfa levels in pregnant women with Zika virus (ZIKV) infection and its relationship to congenital syndrome severity: systematic review and meta-analyses

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.19080

Keywords:

Zika virus; Congenital syndrome; TNF levels; TNF expression; Pregnancy; Severity.

Abstract

The pathological process caused by the Zika virus (ZIKV), which is transmitted by mosquitoes of the Aedes genus, presents different signs and symptoms, with some difficulty in finding genetic, biochemical or immunological biomarkers, indicating alterations at the level of target tissues. Thus, the study aims to verify whether the increased expression or plasma levels of TNF-alpha in pregnant women with ZIKV infection are associated with the occurrence/severity of the Congenital Syndrome. As a methodological process, it is a systematic literature review, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for systematic reviews and meta-analysis. The studies were searched in the Scielo, Pubmed, LILACS and Scopus data sources, where all analyzes were performed using the REVMAN 5.4 software (The Cochrane Collaboration, 2020). Due to the heterogeneity of the studies included in the meta-analysis, the random-effects model was selected, and seven studies were used. The results and discussion indicate that the findings in the studies indicated high I2 values ​​(95%; p<0.01) for the outcome, showing considerable heterogeneity, the results demonstrate that there is a considerable elevation of the cytokine TNF- alpha  in SCZ, being that the role of TNF- alpha  both in infectious diseases and in acute and chronic inflammation has been increasingly described, in an attempt to better understand the dynamics of the body's defense response to the invading particles that affect it. When the production of proinflammatory cytokines, the presence of plasma levels of TNF- alpha in pregnant women with ZIKV infection becomes evident as biological markers.

References

Alagarasu, K., Bachal, R. V., Damle, I., Shah, P. S., & Cecilia, D. (2015). Association of FCGR2A p.R131H and CCL2 c.-2518 A > G gene variants with thrombocytopenia in patients with dengue virus infection. Human Immunology, 76(11), 819–822. https://doi.org/10.1016/J.HUMIMM.2015.09.042

Barros, J. B. de S., da Silva, P. A. N., Koga, R. de C. R., Gonzalez-Dias, P., Filho, J. R. C., Nagib, P. R. A., Coelho, V., Nakaya, H. I., Fonseca, S. G., & Pfrimer, I. A. H. (2018). Acute Zika virus infection in an endemic area shows modest proinflammatory systemic immunoactivation and cytokine-symptom associations. Frontiers in Immunology, 9(MAY). https://doi.org/10.3389/fimmu.2018.00821

Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C., & Musso, D. (2017). An update on Zika virus infection. In The Lancet (Vol. 390, Issue 10107, pp. 2099–2109). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(17)31450-2

Bayer, A., Lennemann, N. J., Ouyang, Y., Bramley, J. C., Morosky, S., Marques, E. T. D. A., Cherry, S., Sadovsky, Y., & Coyne, C. B. (2016). Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host & Microbe, 19(5), 705–712. https://doi.org/10.1016/J.CHOM.2016.03.008

BRASIL. (2015). Ministério da Saúde Secretaria Atenção à Saúde Protocolo De Atenção À Saúde E Resposta À Ocorrência De Microcefalia Relacionada À Infecção Pelo Vírus Zika. www.saude.g

Camacho-Zavala, E., Santacruz-Tinoco, C., Muñoz, E., Chacón-Salinas, R., Salazar-Sanchez, M. I., Grajales, C., González-Ibarra, J., Borja-Aburto, V. H., Jaenisch, T., & Gonzalez-Bonilla, C. R. (2021). Pregnant Women Infected with Zika Virus Show Higher Viral Load and Immunoregulatory Cytokines Profile with CXCL10 Increase. Viruses, 13(1). https://doi.org/10.3390/v13010080

Da Silva, E., Maria, A., Sangiovo, B., Suelen, F., Pereira, O., Eickhoff, C., & Casalini, C. (2017). Zika Vírus: Fatores Evolutivos Determinantes Para Sua Epidemia E Patogenia. In Revista Saúde Integrada. http://local.cnecsan.edu.br/revista/index.php/saude/index

da Silva, M. H. M., Moises, R. N. C., Alves, B. E. B., Pereira, H. W. B., de Paiva, A. A. P., Morais, I. C., Nascimento, Y. M., Monteiro, J. D., de Souto, J. T., Nascimento, M. S. L., de Araújo, J. M. G., da Guedes, P. M. M., & Fernandes, J. V. (2019). Innate immune response in patients with acute Zika virus infection. Medical Microbiology and Immunology, 208(6). https://doi.org/10.1007/s00430-019-00588-8

Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., & Rana, T. M. (2016). Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell, 19(2), 258–265. https://doi.org/10.1016/J.STEM.2016.04.014

De Oliveira, C. S., & Da Costa Vasconcelos, P. F. (2016). Microcephaly and Zika virus. Jornal de Pediatria, 92(2), 103–105. https://doi.org/10.1016/j.jped.2016.02.003

Faizan, M. I., Abdullah, M., Ali, S., Naqvi, I. H., Ahmed, A., & Parveen, S. (2016). Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology, 59(3), 152–158. https://doi.org/10.1159/000452950

Fuchs, S. C., & Paim, B. S. (2010). Seção de bioestatística revisão sistemática de estudos observacionais com metanálise. Hcpa, 30(3), 294–301.

Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N., Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., Cao-Lormeau, V.-M., Choumet, V., Briant, L., Desprès, P., Amara, A., Yssel, H., & Missé, D. (2015). Biology of Zika Virus Infection in Human Skin Cells. Journal of Virology, 89(17), 8880–8896. https://doi.org/10.1128/JVI.00354-15

Higuchi, T., Seki, N., Kamizono, S., Yamada, A., Kimura, A., Kato, H., & Itoh, K. (1998). Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-α gene in Japanese. Tissue Antigens, 51(6), 605–612. https://doi.org/10.1111/J.1399-0039.1998.TB03002.X

Kam, Y. W., Leite, J. A., Lum, F. M., Tan, J. J. L., Lee, B., Judice, C. C., De Toledo Teixeira, D. A., Andreata-Santos, R., Vinolo, M. A., Angerami, R., Resende, M. R., Freitas, A. R. R., Amaral, E., Passini, R., Costa, M. L., Guida, J. P., Arns, C. W., Ferreira, L. C. S., Rénia, L., … Costa, F. T. M. (2017). Specific biomarkers associated with neurological complications and congenital central nervous system abnormalities from Zika virus-infected patients in Brazil. Journal of Infectious Diseases, 216(2). https://doi.org/10.1093/infdis/jix261

Kasztelewicz, B., Czech-Kowalska, J., Lipka, B., Milewska-Bobula, B., Borszewska-Kornacka, M. K., Romańska, J., & Dzierżanowska-Fangrat, K. (2017). Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. European Journal of Clinical Microbiology & Infectious Diseases 2017 36:10, 36(10), 1811–1818. https://doi.org/10.1007/S10096-017-2996-6

Kerui, V., Lin, L., Ai, Q., Wan, J., Dai, J., Liu, G., Tang, L., Yang, Y., Ge, P., Jiang, R., & Zhang, L. (2018). Lipopolysaccharide-Induced Dephosphorylation of AMPK-Activated Protein Kinase Potentiates Inflammatory Injury via Repression of ULK1-Dependent Autophagy. Frontiers in Immunology, 9(JUN). https://doi.org/10.3389/FIMMU.2018.01464

Kindberg, E., Vene, S., Mickiene, A., Lundkvist, Å., Lindquist, L., & Svensson, L. (2011). A Functional Toll-Like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-borne Encephalitis Virus (TBEV) Infection. The Journal of Infectious Diseases, 203(4), 523–528. https://doi.org/10.1093/INFDIS/JIQ082

Kumar, A., Giri, S., & Kumar, A. (2016a). 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis. Cellular Microbiology, 18(12), 1815–1830. https://doi.org/10.1111/CMI.12625

Kumar, A., Giri, S., & Kumar, A. (2016b). AICAR-mediated AMPK activation induces protective innate responses in bacterial endophthalmitis. Cellular Microbiology, 18(12), 1815. https://doi.org/10.1111/CMI.12625

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/10.1016/J.JCLINEPI.2009.06.006

Lum, F. M., Narang, V., Hue, S., Chen, J., McGovern, N., Rajarethinam, R., Tan, J. J. L., Amrun, S. N., Chan, Y. H., Lee, C. Y. P., Chua, T. K., Yee, W. X., Yeo, N. K. W., Tan, T. C., Liu, X., Haldenby, S., Leo, Y. sin, Ginhoux, F., Chan, J. K. Y., … Ng, L. F. P. (2019). Immunological observations and transcriptomic analysis of trimester-specific full-term placentas from three Zika virus-infected women. Clinical and Translational Immunology, 8(11), 1–15. https://doi.org/10.1002/cti2.1082

Maciel, I. J., Júnior, J. B. S., & Martelli, C. M. T. (2008). Epidemiologia e desafios no controle do dengue. Revista de Patologia Tropical / Journal of Tropical Pathology, 37(2), 111–130. https://doi.org/10.5216/RPT.V37I2.4998

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/JOURNAL.PMED.1000097

Moreira, D., Silvestre, R., da Silva, A., Estaquier, J., Foretz, M., & Viollet, B. (2016). AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes? Current Drug Targets, 17(8), 942–953. https://doi.org/10.2174/1389450116666150416120559

Musso, D., Cao-Lormeau, V. M., & Gubler, D. J. (2015). Zika virus: Following the path of dengue and chikungunya? In The Lancet (Vol. 386, Issue 9990, pp. 243–244). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)61273-9

Naveca, F. G., Pontes, G. S., Chang, A. Y. H., da Silva, G. A. V., do Nascimento, V. A., Monteiro, D. C. da S., da Silva, M. S., Abdalla, L. F., Santos, J. H. A., de Almeida, T. A. P., Mejía, M. del C. C., de Mesquita, T. G. R., Encarnação, H. V. de S., Gomes, M. de S., Amaral, L. R., Campi-Azevedo, A. C., Coelho-Dos-Reis, J. G., Antonelli, L. R. do V., Teixeira-Carvalho, A., … Ramasawmy, R. (2018). Analysis of the immunological biomarker profile during acute zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Memorias Do Instituto Oswaldo Cruz, 113(6). https://doi.org/10.1590/0074-02760170542

Nem de Oliveira Souza, I., Frost, P. S., França, J. V, Nascimento-Viana, J. B., Neris, R. L. S., Freitas, L., Pinheiro, D. J. L. L., Nogueira, C. O., Neves, G., Chimelli, L., De Felice, F. G., Cavalheiro, É. A., Ferreira, S. T., Assunção-Miranda, I., Figueiredo, C. P., Da Poian, A. T., & Clarke, J. R. (2018). Acute and chronic neurological consequences of early-life Zika virus infection in mice. Science Translational Medicine, 10(444). https://doi.org/10.1126/scitranslmed.aar2749

Ojha, C. R., Rodriguez, M., Lapierre, J., Karuppan, M. K. M., Branscome, H., Kashanchi, F., & El-Hage, N. (2018). Complementary mechanisms potentially involved in the pathology of Zika virus. In Frontiers in Immunology (Vol. 9, Issue OCT, p. 2340). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.02340

Petrônio, C. N. V., Melo, A. M. D. de, Mesquita Neto, E., Sampaio, J. A. A., Telles, M. V. L., & Souza, C. M. S. C. de. (2018). O Início da Epidemia do Zika Vírus e os seus Reflexos na Saúde Pública Nacional e Internacional. Id on Line Revista De Psicologia, 12(40), 1232–1235. https://doi.org/10.14295/idonline.v12i40.1188

Rabelo, K., Souza, L. J., Salomão, N., Machado, L., Pereira, P., Portari, E., Oliveira, R., Santos, F., Neves, L., Morgade, L., Provance Jr., D., Mendonça, L., & Paes, M. (2020). Zika Induces Human Placental Damage and Inflammation. Frontiers in Immunology, 11. https://doi.org/10.3389/FIMMU.2020.02146

Rabelo, K., Souza, L., Salomão, N., Oliveira, E., Sentinelli, L., Lacerda, M., Saraquino, P., Rosman, F., Oliveira, R., Carvalho, J., & Paes, M. (2018). Placental Inflammation and Fetal Injury in a Rare Zika Case Associated With Guillain-Barré Syndrome and Abortion. Frontiers in Microbiology, 9(MAY). https://doi.org/10.3389/FMICB.2018.01018

Santos, C. N. O., Ribeiro, D. R., Cardoso Alves, J., Cazzaniga, R. A., Magalhães, L. S., De Souza, M. S. F., Fonseca, A. B. L., Bispo, A. J. B., Porto, R. L. S., Santos, C. A. Dos, Da Silva, Â. M., Teixeira, M. M., De Almeida, R. P., & De Jesus, A. R. (2019). Association between Zika Virus Microcephaly in Newborns with the rs3775291 Variant in Toll-Like Receptor 3 and rs1799964 Variant at Tumor Necrosis Factor-α Gene. Journal of Infectious Diseases, 220(11), 1797–1801. https://doi.org/10.1093/infdis/jiz392

Schriefer, A., & Carvalho, E. M. (2008). Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarkers in Medicine.

Silva, L. B., dos Santos Neto, A. P., Maia, S. M. A. S., dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. de A. T., Júnior, S. A., & Leão, J. C. (2019). The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes. The Open Dentistry Journal, 13(1), 332–338. https://doi.org/10.2174/1874210601913010332

Silva, M., Costa, H., Valadares, B., Grecchi, L., Nagao, L., & Santos, G. (2019). Overview of Brazilian Requirements for Therapeutic Equivalence of Orally Inhaled and Nasal Drug Products. AAPS PharmSciTech, 20(6), 1–7.

Singh, S., Singh, P., Suhail, H., Arumugaswami, V., Pellett, P., Giri, S., & Kumar, A. (2020). AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. Journal of Immunology (Baltimore, Md. : 1950), 204(7), 1810–1824. https://doi.org/10.4049/JIMMUNOL.1901310

Sironi, M., Biasin, M., Cagliani, R., Forni, D., Luca, M. De, Saulle, I., Caputo, S. Lo, Mazzotta, F., Macías, J., Pineda, J. A., Caruz, A., & Clerici, M. (2012). A Common Polymorphism in TLR3 Confers Natural Resistance to HIV-1 Infection. The Journal of Immunology, 188(2), 818–823. https://doi.org/10.4049/JIMMUNOL.1102179

Studzińska, M., Jabłońska, A., Wiśniewska-Ligier, M., Nowakowska, D., Gaj, Z., Leśnikowski, Z. J., Woźniakowska-Gęsicka, T., Wilczyński, J., & Paradowska, E. (2017). Association of TLR3 L412F Polymorphism with Cytomegalovirus Infection in Children. PLOS ONE, 12(1), e0169420. https://doi.org/10.1371/JOURNAL.PONE.0169420

Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Yao, B., Shin, J., Zhang, F., Lee, E. M., Christian, K. M., Didier, R. A., Jin, P., Song, H., & Ming, G. L. (2016). Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell, 18(5), 587–590. https://doi.org/10.1016/J.STEM.2016.02.016

Vinhaes, C. L., Arriaga, M. B., de Almeida, B. L., Oliveira, J. V., Santos, C. S., Calcagno, J. I., Carvalho, T. X., Giovanetti, M., Alcantara, L. C. J., de Siqueira, I. C., & Andrade, B. B. (2020). Newborns with zika virus-associated microcephaly exhibit marked systemic inflammatory imbalance. Journal of Infectious Diseases, 222(4). https://doi.org/10.1093/infdis/jiaa197

Published

15/08/2021

How to Cite

COSTA, E. I. F. S. .; PORTO, M. de J. .; SOUSA, D. F. de .; FIGUEIREDO, C. A. V. .; CARNEIRO, V. L. Plasma TNF-alfa levels in pregnant women with Zika virus (ZIKV) infection and its relationship to congenital syndrome severity: systematic review and meta-analyses. Research, Society and Development, [S. l.], v. 10, n. 10, p. e428101019080, 2021. DOI: 10.33448/rsd-v10i10.19080. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19080. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences