Niveles de TNF-alfa plasmático en mujeres embarazadas con infección por el virus Zika (ZIKV) y su relación con la gravedad del síndrome congénito: revisión sistemática y metanálisis
DOI:
https://doi.org/10.33448/rsd-v10i10.19080Palabras clave:
Virus del Zika; Síndrome congénito; Niveles de TNF; Expresión de TNF; Embarazo; Gravedad.Resumen
El proceso patológico provocado por el virus Zika (ZIKV), que es transmitido por mosquitos del género Aedes, presenta diferentes signos y síntomas, con cierta dificultad para encontrar biomarcadores genéticos, bioquímicos o inmunológicos, indicando alteraciones a nivel de tejidos diana. Por lo tanto, el estudio tiene como objetivo verificar si el aumento de la expresión o los niveles plasmáticos de TNF-alfa en mujeres embarazadas con infección por ZIKV están asociados con la aparición / gravedad del síndrome congénito. Como proceso metodológico, es una revisión sistemática de la literatura, siguiendo las recomendaciones del protocolo Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) para revisiones sistemáticas y metaanálisis. Los estudios se buscaron en las fuentes de datos Scielo, Pubmed, LILACS y Scopus, donde todos los análisis se realizaron utilizando el software REVMAN 5.4 (The Cochrane Collaboration, 2020). Debido a la heterogeneidad de los estudios incluidos en el metanálisis, se seleccionó el modelo de efectos aleatorios y se utilizaron siete estudios. Los resultados y la discusión indican que los hallazgos en los estudios indicaron valores altos de I2 (95%; p <0.01) para el resultado, mostrando una heterogeneidad considerable, los resultados demuestran que hay una elevación considerable de la citocina TNF- alfa en SCZ , siendo que se ha descrito cada vez más el papel del TNF- alfa tanto en enfermedades infecciosas como en la inflamación aguda y crónica, en un intento por comprender mejor la dinámica de la respuesta de defensa del organismo ante las partículas invasoras que lo afectan. Cuando se produce la producción de citocinas proinflamatorias, la presencia de niveles plasmáticos de TNF- alfa en mujeres embarazadas con infección por ZIKV se hace evidente como marcadores biológicos.
Citas
Alagarasu, K., Bachal, R. V., Damle, I., Shah, P. S., & Cecilia, D. (2015). Association of FCGR2A p.R131H and CCL2 c.-2518 A > G gene variants with thrombocytopenia in patients with dengue virus infection. Human Immunology, 76(11), 819–822. https://doi.org/10.1016/J.HUMIMM.2015.09.042
Barros, J. B. de S., da Silva, P. A. N., Koga, R. de C. R., Gonzalez-Dias, P., Filho, J. R. C., Nagib, P. R. A., Coelho, V., Nakaya, H. I., Fonseca, S. G., & Pfrimer, I. A. H. (2018). Acute Zika virus infection in an endemic area shows modest proinflammatory systemic immunoactivation and cytokine-symptom associations. Frontiers in Immunology, 9(MAY). https://doi.org/10.3389/fimmu.2018.00821
Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C., & Musso, D. (2017). An update on Zika virus infection. In The Lancet (Vol. 390, Issue 10107, pp. 2099–2109). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(17)31450-2
Bayer, A., Lennemann, N. J., Ouyang, Y., Bramley, J. C., Morosky, S., Marques, E. T. D. A., Cherry, S., Sadovsky, Y., & Coyne, C. B. (2016). Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host & Microbe, 19(5), 705–712. https://doi.org/10.1016/J.CHOM.2016.03.008
BRASIL. (2015). Ministério da Saúde Secretaria Atenção à Saúde Protocolo De Atenção À Saúde E Resposta À Ocorrência De Microcefalia Relacionada À Infecção Pelo Vírus Zika. www.saude.g
Camacho-Zavala, E., Santacruz-Tinoco, C., Muñoz, E., Chacón-Salinas, R., Salazar-Sanchez, M. I., Grajales, C., González-Ibarra, J., Borja-Aburto, V. H., Jaenisch, T., & Gonzalez-Bonilla, C. R. (2021). Pregnant Women Infected with Zika Virus Show Higher Viral Load and Immunoregulatory Cytokines Profile with CXCL10 Increase. Viruses, 13(1). https://doi.org/10.3390/v13010080
Da Silva, E., Maria, A., Sangiovo, B., Suelen, F., Pereira, O., Eickhoff, C., & Casalini, C. (2017). Zika Vírus: Fatores Evolutivos Determinantes Para Sua Epidemia E Patogenia. In Revista Saúde Integrada. http://local.cnecsan.edu.br/revista/index.php/saude/index
da Silva, M. H. M., Moises, R. N. C., Alves, B. E. B., Pereira, H. W. B., de Paiva, A. A. P., Morais, I. C., Nascimento, Y. M., Monteiro, J. D., de Souto, J. T., Nascimento, M. S. L., de Araújo, J. M. G., da Guedes, P. M. M., & Fernandes, J. V. (2019). Innate immune response in patients with acute Zika virus infection. Medical Microbiology and Immunology, 208(6). https://doi.org/10.1007/s00430-019-00588-8
Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., & Rana, T. M. (2016). Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell, 19(2), 258–265. https://doi.org/10.1016/J.STEM.2016.04.014
De Oliveira, C. S., & Da Costa Vasconcelos, P. F. (2016). Microcephaly and Zika virus. Jornal de Pediatria, 92(2), 103–105. https://doi.org/10.1016/j.jped.2016.02.003
Faizan, M. I., Abdullah, M., Ali, S., Naqvi, I. H., Ahmed, A., & Parveen, S. (2016). Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology, 59(3), 152–158. https://doi.org/10.1159/000452950
Fuchs, S. C., & Paim, B. S. (2010). Seção de bioestatística revisão sistemática de estudos observacionais com metanálise. Hcpa, 30(3), 294–301.
Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N., Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., Cao-Lormeau, V.-M., Choumet, V., Briant, L., Desprès, P., Amara, A., Yssel, H., & Missé, D. (2015). Biology of Zika Virus Infection in Human Skin Cells. Journal of Virology, 89(17), 8880–8896. https://doi.org/10.1128/JVI.00354-15
Higuchi, T., Seki, N., Kamizono, S., Yamada, A., Kimura, A., Kato, H., & Itoh, K. (1998). Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-α gene in Japanese. Tissue Antigens, 51(6), 605–612. https://doi.org/10.1111/J.1399-0039.1998.TB03002.X
Kam, Y. W., Leite, J. A., Lum, F. M., Tan, J. J. L., Lee, B., Judice, C. C., De Toledo Teixeira, D. A., Andreata-Santos, R., Vinolo, M. A., Angerami, R., Resende, M. R., Freitas, A. R. R., Amaral, E., Passini, R., Costa, M. L., Guida, J. P., Arns, C. W., Ferreira, L. C. S., Rénia, L., … Costa, F. T. M. (2017). Specific biomarkers associated with neurological complications and congenital central nervous system abnormalities from Zika virus-infected patients in Brazil. Journal of Infectious Diseases, 216(2). https://doi.org/10.1093/infdis/jix261
Kasztelewicz, B., Czech-Kowalska, J., Lipka, B., Milewska-Bobula, B., Borszewska-Kornacka, M. K., Romańska, J., & Dzierżanowska-Fangrat, K. (2017). Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. European Journal of Clinical Microbiology & Infectious Diseases 2017 36:10, 36(10), 1811–1818. https://doi.org/10.1007/S10096-017-2996-6
Kerui, V., Lin, L., Ai, Q., Wan, J., Dai, J., Liu, G., Tang, L., Yang, Y., Ge, P., Jiang, R., & Zhang, L. (2018). Lipopolysaccharide-Induced Dephosphorylation of AMPK-Activated Protein Kinase Potentiates Inflammatory Injury via Repression of ULK1-Dependent Autophagy. Frontiers in Immunology, 9(JUN). https://doi.org/10.3389/FIMMU.2018.01464
Kindberg, E., Vene, S., Mickiene, A., Lundkvist, Å., Lindquist, L., & Svensson, L. (2011). A Functional Toll-Like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-borne Encephalitis Virus (TBEV) Infection. The Journal of Infectious Diseases, 203(4), 523–528. https://doi.org/10.1093/INFDIS/JIQ082
Kumar, A., Giri, S., & Kumar, A. (2016a). 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis. Cellular Microbiology, 18(12), 1815–1830. https://doi.org/10.1111/CMI.12625
Kumar, A., Giri, S., & Kumar, A. (2016b). AICAR-mediated AMPK activation induces protective innate responses in bacterial endophthalmitis. Cellular Microbiology, 18(12), 1815. https://doi.org/10.1111/CMI.12625
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/10.1016/J.JCLINEPI.2009.06.006
Lum, F. M., Narang, V., Hue, S., Chen, J., McGovern, N., Rajarethinam, R., Tan, J. J. L., Amrun, S. N., Chan, Y. H., Lee, C. Y. P., Chua, T. K., Yee, W. X., Yeo, N. K. W., Tan, T. C., Liu, X., Haldenby, S., Leo, Y. sin, Ginhoux, F., Chan, J. K. Y., … Ng, L. F. P. (2019). Immunological observations and transcriptomic analysis of trimester-specific full-term placentas from three Zika virus-infected women. Clinical and Translational Immunology, 8(11), 1–15. https://doi.org/10.1002/cti2.1082
Maciel, I. J., Júnior, J. B. S., & Martelli, C. M. T. (2008). Epidemiologia e desafios no controle do dengue. Revista de Patologia Tropical / Journal of Tropical Pathology, 37(2), 111–130. https://doi.org/10.5216/RPT.V37I2.4998
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/JOURNAL.PMED.1000097
Moreira, D., Silvestre, R., da Silva, A., Estaquier, J., Foretz, M., & Viollet, B. (2016). AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes? Current Drug Targets, 17(8), 942–953. https://doi.org/10.2174/1389450116666150416120559
Musso, D., Cao-Lormeau, V. M., & Gubler, D. J. (2015). Zika virus: Following the path of dengue and chikungunya? In The Lancet (Vol. 386, Issue 9990, pp. 243–244). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)61273-9
Naveca, F. G., Pontes, G. S., Chang, A. Y. H., da Silva, G. A. V., do Nascimento, V. A., Monteiro, D. C. da S., da Silva, M. S., Abdalla, L. F., Santos, J. H. A., de Almeida, T. A. P., Mejía, M. del C. C., de Mesquita, T. G. R., Encarnação, H. V. de S., Gomes, M. de S., Amaral, L. R., Campi-Azevedo, A. C., Coelho-Dos-Reis, J. G., Antonelli, L. R. do V., Teixeira-Carvalho, A., … Ramasawmy, R. (2018). Analysis of the immunological biomarker profile during acute zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Memorias Do Instituto Oswaldo Cruz, 113(6). https://doi.org/10.1590/0074-02760170542
Nem de Oliveira Souza, I., Frost, P. S., França, J. V, Nascimento-Viana, J. B., Neris, R. L. S., Freitas, L., Pinheiro, D. J. L. L., Nogueira, C. O., Neves, G., Chimelli, L., De Felice, F. G., Cavalheiro, É. A., Ferreira, S. T., Assunção-Miranda, I., Figueiredo, C. P., Da Poian, A. T., & Clarke, J. R. (2018). Acute and chronic neurological consequences of early-life Zika virus infection in mice. Science Translational Medicine, 10(444). https://doi.org/10.1126/scitranslmed.aar2749
Ojha, C. R., Rodriguez, M., Lapierre, J., Karuppan, M. K. M., Branscome, H., Kashanchi, F., & El-Hage, N. (2018). Complementary mechanisms potentially involved in the pathology of Zika virus. In Frontiers in Immunology (Vol. 9, Issue OCT, p. 2340). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.02340
Petrônio, C. N. V., Melo, A. M. D. de, Mesquita Neto, E., Sampaio, J. A. A., Telles, M. V. L., & Souza, C. M. S. C. de. (2018). O Início da Epidemia do Zika Vírus e os seus Reflexos na Saúde Pública Nacional e Internacional. Id on Line Revista De Psicologia, 12(40), 1232–1235. https://doi.org/10.14295/idonline.v12i40.1188
Rabelo, K., Souza, L. J., Salomão, N., Machado, L., Pereira, P., Portari, E., Oliveira, R., Santos, F., Neves, L., Morgade, L., Provance Jr., D., Mendonça, L., & Paes, M. (2020). Zika Induces Human Placental Damage and Inflammation. Frontiers in Immunology, 11. https://doi.org/10.3389/FIMMU.2020.02146
Rabelo, K., Souza, L., Salomão, N., Oliveira, E., Sentinelli, L., Lacerda, M., Saraquino, P., Rosman, F., Oliveira, R., Carvalho, J., & Paes, M. (2018). Placental Inflammation and Fetal Injury in a Rare Zika Case Associated With Guillain-Barré Syndrome and Abortion. Frontiers in Microbiology, 9(MAY). https://doi.org/10.3389/FMICB.2018.01018
Santos, C. N. O., Ribeiro, D. R., Cardoso Alves, J., Cazzaniga, R. A., Magalhães, L. S., De Souza, M. S. F., Fonseca, A. B. L., Bispo, A. J. B., Porto, R. L. S., Santos, C. A. Dos, Da Silva, Â. M., Teixeira, M. M., De Almeida, R. P., & De Jesus, A. R. (2019). Association between Zika Virus Microcephaly in Newborns with the rs3775291 Variant in Toll-Like Receptor 3 and rs1799964 Variant at Tumor Necrosis Factor-α Gene. Journal of Infectious Diseases, 220(11), 1797–1801. https://doi.org/10.1093/infdis/jiz392
Schriefer, A., & Carvalho, E. M. (2008). Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarcadores em Medicina Biomarkers in Medicine.
Silva, L. B., dos Santos Neto, A. P., Maia, S. M. A. S., dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. de A. T., Júnior, S. A., & Leão, J. C. (2019). The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes. The Open Dentistry Journal, 13(1), 332–338. https://doi.org/10.2174/1874210601913010332
Silva, M., Costa, H., Valadares, B., Grecchi, L., Nagao, L., & Santos, G. (2019). Overview of Brazilian Requirements for Therapeutic Equivalence of Orally Inhaled and Nasal Drug Products. AAPS PharmSciTech, 20(6), 1–7.
Singh, S., Singh, P., Suhail, H., Arumugaswami, V., Pellett, P., Giri, S., & Kumar, A. (2020). AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. Journal of Immunology (Baltimore, Md. : 1950), 204(7), 1810–1824. https://doi.org/10.4049/JIMMUNOL.1901310
Sironi, M., Biasin, M., Cagliani, R., Forni, D., Luca, M. De, Saulle, I., Caputo, S. Lo, Mazzotta, F., Macías, J., Pineda, J. A., Caruz, A., & Clerici, M. (2012). A Common Polymorphism in TLR3 Confers Natural Resistance to HIV-1 Infection. The Journal of Immunology, 188(2), 818–823. https://doi.org/10.4049/JIMMUNOL.1102179
Studzińska, M., Jabłońska, A., Wiśniewska-Ligier, M., Nowakowska, D., Gaj, Z., Leśnikowski, Z. J., Woźniakowska-Gęsicka, T., Wilczyński, J., & Paradowska, E. (2017). Association of TLR3 L412F Polymorphism with Cytomegalovirus Infection in Children. PLOS ONE, 12(1), e0169420. https://doi.org/10.1371/JOURNAL.PONE.0169420
Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Yao, B., Shin, J., Zhang, F., Lee, E. M., Christian, K. M., Didier, R. A., Jin, P., Song, H., & Ming, G. L. (2016). Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell, 18(5), 587–590. https://doi.org/10.1016/J.STEM.2016.02.016
Vinhaes, C. L., Arriaga, M. B., de Almeida, B. L., Oliveira, J. V., Santos, C. S., Calcagno, J. I., Carvalho, T. X., Giovanetti, M., Alcantara, L. C. J., de Siqueira, I. C., & Andrade, B. B. (2020). Newborns with zika virus-associated microcephaly exhibit marked systemic inflammatory imbalance. Journal of Infectious Diseases, 222(4). https://doi.org/10.1093/infdis/jiaa197
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Emile Ivana Fernandes Santos Costa; Murilo de Jesus Porto; Danilo Ferreira de Sousa; Camila Alexandrina Viana Figueiredo; Valdirene Leão Carneiro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.